cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326333 Number of integer partitions of n with sortable prime factors.

This page as a plain text file.
%I A326333 #7 Jun 28 2019 21:14:23
%S A326333 1,1,2,3,5,7,11,15,22,30,42,56,76,99,132,171,222,283,363,457,577,721,
%T A326333 902,1115,1379,1693,2076,2530,3077,3723,4500,5410,6494,7765,9270,
%U A326333 11025,13089,15491,18307,21569,25369,29765,34869,40750,47546,55361,64367,74685,86529
%N A326333 Number of integer partitions of n with sortable prime factors.
%C A326333 An integer partition has sortable prime factors if there is a permutation (c_1,...,c_k) of the parts such that the maximum prime factor of c_i is at most the minimum prime factor of c_{i+1}. For example, the partition (27,8,6) is sortable because the permutation (8,6,27) satisfies the condition.
%F A326333 A000041(n) = a(n) + A326332(n).
%t A326333 Table[Length[Select[IntegerPartitions[n],OrderedQ[Join@@Sort[First/@FactorInteger[#]&/@#,OrderedQ[PadRight[{#1,#2}]]&]]&]],{n,0,20}]
%Y A326333 Unsortable integer partitions are A326332.
%Y A326333 Sortable normal multiset partitions are A326212.
%Y A326333 Sortable factorizations are A326334.
%Y A326333 Cf. A000041, A000108, A001055, A058681, A112798, A326209, A326211, A326258.
%K A326333 nonn
%O A326333 0,3
%A A326333 _Gus Wiseman_, Jun 27 2019