This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326335 #6 Jun 28 2019 21:14:40 %S A326335 1,1,1,1,2,6,21,86,394,1974,10696 %N A326335 Number of set partitions of {1..n} whose nesting blocks are connected. %C A326335 Two blocks are nesting if they are of the form {...x,y...}, {...z,t...} where x < z < t < y or z < x < y < t. A set partition has its nesting blocks connected if the graph whose vertices are the blocks and whose edges are nesting pairs of blocks is connected. %e A326335 The a(0) = 1 through a(6) = 21 set partitions: %e A326335 {} {1} {12} {123} {1234} {12345} {123456} %e A326335 {14}{23} {125}{34} {1236}{45} %e A326335 {134}{25} {1245}{36} %e A326335 {14}{235} {125}{346} %e A326335 {145}{23} {1256}{34} %e A326335 {15}{234} {126}{345} %e A326335 {134}{256} %e A326335 {1345}{26} %e A326335 {1346}{25} %e A326335 {136}{245} %e A326335 {14}{2356} %e A326335 {145}{236} %e A326335 {1456}{23} %e A326335 {146}{235} %e A326335 {15}{2346} %e A326335 {156}{234} %e A326335 {16}{2345} %e A326335 {15}{26}{34} %e A326335 {16}{23}{45} %e A326335 {16}{24}{35} %e A326335 {16}{25}{34} %t A326335 nesXQ[stn_]:=MatchQ[stn,{___,{___,x_,y_,___},___,{___,z_,t_,___},___}/;x<z<t<y||z<x<y<t]; %t A326335 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A326335 nestcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],nesXQ]]]; %t A326335 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A326335 Table[Length[Select[sps[Range[n]],Length[nestcmpts[#]]<=1&]],{n,0,5}] %Y A326335 Simple graphs whose nesting blocks are connected are A326330. %Y A326335 Set partitions whose crossing blocks are connected are A099947. %Y A326335 Set partitions whose capturing blocks are connected are A326336. %Y A326335 Cf. A000110, A001519, A016098, A122880, A324173, A326243, A326248, A326293, A326331, A326337. %K A326335 nonn,more %O A326335 0,5 %A A326335 _Gus Wiseman_, Jun 27 2019