This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326336 #6 Jun 28 2019 21:14:48 %S A326336 1,1,1,1,2,7,24,100,458,2279,12270 %N A326336 Number of set partitions of {1..n} whose capturing blocks are connected. %C A326336 Two blocks are capturing if they are of the form {...x...y...}, {...z...t...} where x < z < t < y or z < x < y < t. A set partition has its capturing blocks connected if the graph whose vertices are the blocks and whose edges are capturing pairs of blocks is connected. %e A326336 The a(0) = 1 through a(6) = 24 set partitions: %e A326336 {} {1} {12} {123} {1234} {12345} {123456} %e A326336 {14}{23} {125}{34} {1236}{45} %e A326336 {134}{25} {1245}{36} %e A326336 {135}{24} {1246}{35} %e A326336 {14}{235} {125}{346} %e A326336 {145}{23} {1256}{34} %e A326336 {15}{234} {126}{345} %e A326336 {134}{256} %e A326336 {1345}{26} %e A326336 {1346}{25} %e A326336 {135}{246} %e A326336 {1356}{24} %e A326336 {136}{245} %e A326336 {14}{2356} %e A326336 {145}{236} %e A326336 {1456}{23} %e A326336 {146}{235} %e A326336 {15}{2346} %e A326336 {156}{234} %e A326336 {16}{2345} %e A326336 {15}{26}{34} %e A326336 {16}{23}{45} %e A326336 {16}{24}{35} %e A326336 {16}{25}{34} %t A326336 capXQ[stn_]:=MatchQ[stn,{___,{___,x_,___,y_,___},___,{___,z_,___,t_,___},___}/;x<z<t<y||z<x<y<t]; %t A326336 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A326336 captcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],capXQ]]]; %t A326336 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A326336 Table[Length[Select[sps[Range[n]],Length[captcmpts[#]]<=1&]],{n,0,6}] %Y A326336 Simple graphs whose capturing blocks are connected are A326330. %Y A326336 Set partitions whose crossing blocks are connected are A099947. %Y A326336 Set partitions whose nesting blocks are connected are A326335. %Y A326336 Cf. A000110, A001519, A016098, A122880, A324173, A326243, A326248, A326293, A326331, A326337. %K A326336 nonn,more %O A326336 0,5 %A A326336 _Gus Wiseman_, Jun 28 2019