This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326337 #4 Jun 28 2019 21:14:55 %S A326337 1,0,1,3,29,595,23437 %N A326337 Number of simple graphs covering the vertices {1..n} whose weakly nesting edges are connected. %C A326337 Two edges {a,b}, {c,d} are weakly nesting if a <= c < d <= b or c <= a < b <= d. A graph has its weakly nesting edges connected if the graph whose vertices are the edges and whose edges are weakly nesting pairs of edges is connected. %H A326337 Gus Wiseman, <a href="/A326337/a326337.png">The a(4) = 29 covering simple graphs whose weakly nesting edges are connected</a>. %t A326337 wknXQ[stn_]:=MatchQ[stn,{___,{___,x_,y_,___},___,{___,z_,t_,___},___}/;(x<=z&&y>=t)||(x>=z&&y<=t)]; %t A326337 wknestcmpts[stn_]:=csm[Union[List/@stn,Select[Subsets[stn,{2}],wknXQ]]]; %t A326337 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A326337 Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[wknestcmpts[#]]<=1&]],{n,0,5}] %Y A326337 The binomial transform is the non-covering case A326338. %Y A326337 The non-weak case is A326331. %Y A326337 Simple graphs whose nesting edges are connected are A326330. %Y A326337 Cf. A006125, A007297, A054726, A099947, A136653. %Y A326337 Cf. A324169, A324327, A326293, A326294, A326329, A326335, A326336. %K A326337 nonn,more %O A326337 0,4 %A A326337 _Gus Wiseman_, Jun 28 2019