This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326341 #7 Jun 30 2019 06:50:44 %S A326341 1,0,1,0,1,5,22,119 %N A326341 Number of minimal topologically connected chord graphs covering {1..n}. %C A326341 Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b. A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected. %e A326341 The a(4) = 1 through a(6) = 22 edge-sets: %e A326341 {13,24} {13,14,25} {13,25,46} %e A326341 {13,24,25} {14,25,36} %e A326341 {13,24,35} {14,26,35} %e A326341 {14,24,35} {15,24,36} %e A326341 {14,25,35} {13,14,15,26} %e A326341 {13,14,25,26} %e A326341 {13,15,24,26} %e A326341 {13,15,26,46} %e A326341 {13,24,25,26} %e A326341 {13,24,25,36} %e A326341 {13,24,26,35} %e A326341 {13,24,35,36} %e A326341 {13,24,35,46} %e A326341 {14,15,26,36} %e A326341 {14,24,35,36} %e A326341 {14,24,35,46} %e A326341 {14,25,35,46} %e A326341 {15,24,35,46} %e A326341 {15,25,35,46} %e A326341 {15,25,36,46} %e A326341 {15,26,35,46} %e A326341 {15,26,36,46} %t A326341 croXQ[stn_]:=MatchQ[stn,{___,{___,x_,___,y_,___},___,{___,z_,___,t_,___},___}/;x<z<y<t||z<x<t<y]; %t A326341 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A326341 crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]]; %t A326341 Table[Length[fasmin[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[crosscmpts[#]]<=1]&]]],{n,0,5}] %Y A326341 The non-minimal case is A324327. %Y A326341 Minimal covers are A053530. %Y A326341 Topologically connected graphs are A324327 (covering) or A324328 (all). %Y A326341 Cf. A000108, A006125, A007297, A054726, A136653, A324169, A326210, A326293. %K A326341 nonn,more %O A326341 0,6 %A A326341 _Gus Wiseman_, Jun 29 2019