A326293
Number of non-nesting, topologically connected simple graphs with vertices {1..n}.
Original entry on oeis.org
1, 1, 2, 4, 8, 27, 192, 1750
Offset: 0
The inverse binomial transform is the covering case
A326349.
Topologically connected simple graphs are
A324328.
Non-crossing simple graphs are
A054726.
Topologically connected set partitions are
A099947.
-
croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]
A326338
Number of simple graphs with vertices {1..n} whose weakly nesting edges are connected.
Original entry on oeis.org
1, 1, 2, 7, 48, 781, 27518
Offset: 0
The inverse binomial transform is the covering case
A326337.
-
wknXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;(x<=z&&y>=t)||(x>=z&&y<=t)];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[Union[List/@#,Select[Subsets[#,{2}],wknXQ]]]]<=1&]],{n,0,5}]
A326349
Number of non-nesting, topologically connected simple graphs covering {1..n}.
Original entry on oeis.org
1, 0, 1, 0, 1, 11, 95, 797
Offset: 0
The a(5) = 11 edge-sets:
{13,14,25}
{13,24,25}
{13,24,35}
{14,24,35}
{14,25,35}
{13,14,24,25}
{13,14,24,35}
{13,14,25,35}
{13,24,25,35}
{14,24,25,35}
{13,14,24,25,35}
The binomial transform is the non-covering case
A326293.
Topologically connected, covering simple graphs are
A324327.
Non-crossing, covering simple graphs are
A324169.
-
croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]
Showing 1-3 of 3 results.
Comments