cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326346 Total number of partitions in the partitions of compositions of n.

This page as a plain text file.
%I A326346 #37 Dec 05 2020 06:41:52
%S A326346 0,1,4,14,47,151,474,1457,4414,13210,39155,115120,336183,976070,
%T A326346 2819785,8110657,23239662,66362960,188930728,536407146,1519205230,
%U A326346 4293061640,12106883585,34079016842,95762829405,268670620736,752676269695,2105751165046,5883798478398
%N A326346 Total number of partitions in the partitions of compositions of n.
%H A326346 Alois P. Heinz, <a href="/A326346/b326346.txt">Table of n, a(n) for n = 0..2313</a>
%F A326346 a(n) = Sum_{k=1..n} k * A060642(n,k).
%F A326346 a(n) ~ c * d^n * n, where d = A246828 = 2.69832910647421123126399866618837633... and c = 0.171490233695958246364725709205670983251448838158816... - _Vaclav Kotesovec_, Sep 14 2019
%e A326346 a(3) = 14 = 1+1+1+2+2+2+2+3 counts the partitions in 3, 21, 111, 2|1, 11|1, 1|2, 1|11, 1|1|1.
%p A326346 b:= proc(n) option remember; `if`(n=0, [1, 0], (p-> p+
%p A326346       [0, p[1]])(add(combinat[numbpart](j)*b(n-j), j=1..n)))
%p A326346     end:
%p A326346 a:= n-> b(n)[2]:
%p A326346 seq(a(n), n=0..32);
%t A326346 b[n_] := b[n] = If[n==0, {1, 0}, Function[p, p + {0, p[[1]]}][Sum[ PartitionsP[j] b[n-j], {j, 1, n}]]];
%t A326346 a[n_] := b[n][[2]];
%t A326346 a /@ Range[0, 32] (* _Jean-François Alcover_, Dec 05 2020, after _Alois P. Heinz_ *)
%Y A326346 Cf. A000041, A030267, A055887, A060642, A304969, A325915, A327548.
%K A326346 nonn
%O A326346 0,3
%A A326346 _Alois P. Heinz_, Sep 11 2019