cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326354 a(n) is the number of fractions reduced to lowest terms with numerator and denominator less than or equal to n in absolute value.

This page as a plain text file.
%I A326354 #35 Sep 08 2022 08:46:24
%S A326354 1,3,7,15,23,39,47,71,87,111,127,167,183,231,255,287,319,383,407,479,
%T A326354 511,559,599,687,719,799,847,919,967,1079,1111,1231,1295,1375,1439,
%U A326354 1535,1583,1727,1799,1895,1959,2119,2167,2335,2415,2511,2599,2783,2847,3015,3095
%N A326354 a(n) is the number of fractions reduced to lowest terms with numerator and denominator less than or equal to n in absolute value.
%C A326354 All the terms of this sequence are odd numbers (A005408).
%C A326354 For n > 1, a(n) is congruent to 7 mod 8 (A004771).
%C A326354 Apart from a(0) the same as A171503. - _R. J. Mathar_, Sep 03 2019
%F A326354 a(0) = 1, a(1) = 3 and a(n) = a(n-1) + 4*A000010(n) for n > 1, where A000010(n) = phi(n).
%F A326354 a(n) = 2*A206350(n+1) - 1. - _Michel Marcus_, Jul 07 2019
%e A326354 a(0) = 1 since X(0) = {0};
%e A326354 a(1) = 3 since X(1) = {-1, 0, 1};
%e A326354 a(2) = 7 since X(2) = {-2, -1, -1/2, 0, 1/2, 1, 2};
%e A326354 a(3) = 15 since X(3) = {-3, -2, -3/2, -1, -2/3, -1/2, -1/3, 0, 1/3, 1/2, 2/3, 1, 3/2, 2, 3};
%e A326354 ...
%o A326354 (Magma) I:=[1, 3]; [n le 2 select I[n] else Self(n-1)+4*EulerPhi(n-1): n in [1..51]];
%o A326354 (PARI) nmax = 50; a=vector(nmax+1); a[1]=1; a[2]=3; for(n=3, nmax+1, a[n]=a[n-1]+4*eulerphi(n-1)); a
%Y A326354 Cf. A000010, A004771, A005408, A171503, A206350.
%K A326354 nonn
%O A326354 0,2
%A A326354 _Stefano Spezia_, Jul 06 2019