A326356 Lesser of twin primes p >= 5 for which phi(p+1)/phi(p-1) reaches record value, where phi(n) is the Euler totient function (A000010).
5, 2381, 3851, 20021, 50051, 52361, 424271, 470471, 602141, 2302301, 6806801, 16926911, 17497481, 69989921, 78278201, 183953771, 242662421, 468818351, 2156564411, 24912037151, 43874931101, 73769375681, 131104243271, 1360122864101, 1943064533411, 2635321709021, 3075260848661, 4078063299311
Offset: 1
Keywords
Examples
The values of phi(p+1)/phi(p-1) for the first terms are 1 < 1.031... < 1.06 < 1.118... < 1.12 < ...
Links
- Stephan Ramon Garcia, Florian Luca, Kye Shi, Gabe Udell, Primitive root bias for twin primes II: Schinzel-type theorems for totient quotients and the sum-of-divisors function, arXiv:1906.05927 [math.NT], 2019.
- Wikipedia, Dickson's conjecture.
Crossrefs
Programs
-
Mathematica
s = {}; rm = 0; p = 5; Do[q = NextPrime[p]; If[q - p != 2, p = q; Continue[]]; r = EulerPhi[p + 1]/EulerPhi[p - 1]; If[r > rm, rm = r; AppendTo[s, p]]; p = q, {10^6}]; s
Extensions
a(24)-a(28) from Giovanni Resta, Nov 01 2019
Comments