A326358 Number of maximal antichains of subsets of {1..n}.
1, 2, 3, 7, 29, 376, 31746, 123805914
Offset: 0
Examples
The a(0) = 1 through a(3) = 7 maximal antichains: {} {} {} {} {1} {12} {123} {1}{2} {1}{23} {2}{13} {3}{12} {1}{2}{3} {12}{13}{23}
Links
- Denis Bouyssou, Thierry Marchant, and Marc Pirlot, ELECTRE TRI-nB, pseudo-disjunctive: axiomatic and combinatorial results, arXiv:2410.18443 [cs.DM], 2024. See p. 14.
- Dmitry I. Ignatov, A Note on the Number of (Maximal) Antichains in the Lattice of Set Partitions. In: Ojeda-Aciego, M., Sauerwald, K., Jäschke, R. (eds) Graph-Based Representation and Reasoning. ICCS 2023. Lecture Notes in Computer Science(). Springer, Cham.
- Dmitry I. Ignatov, On the Number of Maximal Antichains in Boolean Lattices for n up to 7. Lobachevskii J. Math., 44 (2023), 137-146.
Crossrefs
Programs
-
GAP
LoadPackage("grape"); maxachP:=function(n) local g,G; g:=Graph(Group(()), Combinations([1..n]), function(x, g) return x; end, function(x, y) return not IsSubset(x, y) and not IsSubset(y, x); end, true); G:=AutGroupGraph(g); return Sum(CompleteSubgraphs(NewGroupGraph(G, g), -1, 2), function(c) return Length(Orbit(G, c, OnSets)); end); end; List([0..7],maxachP); # Mamuka Jibladze, Jan 26 2021
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[stableSets[Subsets[Range[n]],SubsetQ]]],{n,0,5}] (* alternatively *) maxachP[n_]:=FindIndependentVertexSet[ Flatten[Map[Function[s, Map[# \[DirectedEdge] s &, Most[Subsets[s]]]], Subsets[Range[n]]]], Infinity, All]; Table[Length[maxachP[n]],{n,0,6}] (* Mamuka Jibladze, Jan 25 2021 *)
Formula
For n > 0, a(n) = A326359(n) + 1.
Extensions
a(6)-a(7) from Mamuka Jibladze, Jan 26 2021
Comments