This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326361 #18 May 26 2020 21:57:15 %S A326361 1,1,1,2,12,133,11386,12143511 %N A326361 Number of maximal intersecting antichains of sets covering n vertices with no singletons. %C A326361 Covering means there are no isolated vertices. A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint. %e A326361 The a(4) = 12 antichains: %e A326361 {{1,2,3,4}} %e A326361 {{1,2},{1,3,4},{2,3,4}} %e A326361 {{1,3},{1,2,4},{2,3,4}} %e A326361 {{1,4},{1,2,3},{2,3,4}} %e A326361 {{2,3},{1,2,4},{1,3,4}} %e A326361 {{2,4},{1,2,3},{1,3,4}} %e A326361 {{3,4},{1,2,3},{1,2,4}} %e A326361 {{1,2},{1,3},{1,4},{2,3,4}} %e A326361 {{1,2},{2,3},{2,4},{1,3,4}} %e A326361 {{1,3},{2,3},{3,4},{1,2,4}} %e A326361 {{1,4},{2,4},{3,4},{1,2,3}} %e A326361 {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} %t A326361 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A326361 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A326361 Table[Length[fasmax[Select[stableSets[Subsets[Range[n]],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],Union@@#==Range[n]&]]],{n,0,5}] %t A326361 (* 2nd program *) %t A326361 n = 2^6; g = CompleteGraph[n]; i = 0; %t A326361 While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]]; %t A326361 sets = Select[FindClique[g, Infinity, All], BitOr @@ # == n - 1 &]; %t A326361 Length[sets] (* _Elijah Beregovsky_, May 05 2020 *) %Y A326361 Antichains of nonempty, non-singleton sets are A307249. %Y A326361 Minimal covering antichains are A046165. %Y A326361 Maximal intersecting antichains are A007363. %Y A326361 Maximal antichains of nonempty sets are A326359. %Y A326361 Cf. A000372, A003182, A006126, A006602, A014466, A051185, A058891, A261005, A305000, A305844, A326358, A326360, A326362, A326363. %K A326361 nonn,more %O A326361 0,4 %A A326361 _Gus Wiseman_, Jul 01 2019 %E A326361 a(6)-a(7) from _Elijah Beregovsky_, May 05 2020