A326362 Number of maximal intersecting antichains of nonempty, non-singleton subsets of {1..n}.
1, 1, 1, 2, 16, 163, 11742, 12160640
Offset: 0
Examples
The a(4) = 16 maximal intersecting antichains: {{1,2,3,4}} {{1,2},{1,3},{2,3}} {{1,2},{1,4},{2,4}} {{1,3},{1,4},{3,4}} {{2,3},{2,4},{3,4}} {{1,2},{1,3,4},{2,3,4}} {{1,3},{1,2,4},{2,3,4}} {{1,4},{1,2,3},{2,3,4}} {{2,3},{1,2,4},{1,3,4}} {{2,4},{1,2,3},{1,3,4}} {{3,4},{1,2,3},{1,2,4}} {{1,2},{1,3},{1,4},{2,3,4}} {{1,2},{2,3},{2,4},{1,3,4}} {{1,3},{2,3},{3,4},{1,2,4}} {{1,4},{2,4},{3,4},{1,2,3}} {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[stableSets[Subsets[Range[n],{2,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}] (* 2nd program *) n = 2^6; g = CompleteGraph[n]; i = 0; While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]]; sets = FindClique[g, Infinity, All]; Length[sets]-Log[2,n]-1 (* Elijah Beregovsky, May 06 2020 *)
Extensions
a(7) from Elijah Beregovsky, May 06 2020
Comments