This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326363 #18 May 26 2020 21:59:02 %S A326363 1,2,4,6,21,169,11749,12160648 %N A326363 Number of maximal intersecting antichains of subsets of {1..n}. %C A326363 A set system (set of sets) is an antichain if no element is a subset of any other, and is intersecting if no two element are disjoint. %F A326363 For n > 1, a(n) = A007363(n + 1) + 1 = A326362(n) + n + 1. %e A326363 The a(1) = 1 through a(4) = 21 maximal intersecting antichains: %e A326363 {} {} {} {} %e A326363 {1} {1} {1} {1} %e A326363 {2} {2} {2} %e A326363 {12} {3} {3} %e A326363 {123} {4} %e A326363 {12}{13}{23} {1234} %e A326363 {12}{13}{23} %e A326363 {12}{14}{24} %e A326363 {13}{14}{34} %e A326363 {23}{24}{34} %e A326363 {12}{134}{234} %e A326363 {13}{124}{234} %e A326363 {14}{123}{234} %e A326363 {23}{124}{134} %e A326363 {24}{123}{134} %e A326363 {34}{123}{124} %e A326363 {12}{13}{14}{234} %e A326363 {12}{23}{24}{134} %e A326363 {13}{23}{34}{124} %e A326363 {14}{24}{34}{123} %e A326363 {123}{124}{134}{234} %t A326363 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A326363 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A326363 Table[Length[fasmax[stableSets[Subsets[Range[n],{0,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]]],{n,0,5}] %t A326363 (* 2nd program *) %t A326363 n = 2^6; g = CompleteGraph[n]; i = 0; %t A326363 While[i < n, i++; j = i; While[j < n, j++; If[BitAnd[i, j] == 0 || BitAnd[i, j] == i || BitAnd[i, j] == j, g = EdgeDelete[g, i <-> j]]]]; %t A326363 sets = FindClique[g, Infinity, All]; %t A326363 Length[sets] (* _Elijah Beregovsky_, May 06 2020 *) %Y A326363 The case with nonempty, non-singleton edges is A326362. %Y A326363 Antichains of nonempty, non-singleton sets are A307249. %Y A326363 Minimal covering antichains are A046165. %Y A326363 Maximal intersecting antichains are A007363. %Y A326363 Maximal antichains of nonempty sets are A326359. %Y A326363 Cf. A000372, A003182, A006126, A006602, A014466, A051185, A058891, A261005, A305000, A305844, A326358, A326360, A326361. %K A326363 nonn,more %O A326363 0,2 %A A326363 _Gus Wiseman_, Jul 01 2019 %E A326363 a(7) from _Elijah Beregovsky_, May 06 2020