cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326365 Number of intersecting antichains with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.

This page as a plain text file.
%I A326365 #13 Aug 14 2019 18:22:32
%S A326365 1,0,0,1,23,1834,1367903,229745722873,423295077919493525420
%N A326365 Number of intersecting antichains with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices.
%C A326365 Covering means there are no isolated vertices. A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint.
%e A326365 The a(4) = 23 intersecting antichains with empty intersection:
%e A326365   {{1,2},{1,3},{2,3,4}}
%e A326365   {{1,2},{1,4},{2,3,4}}
%e A326365   {{1,2},{2,3},{1,3,4}}
%e A326365   {{1,2},{2,4},{1,3,4}}
%e A326365   {{1,3},{1,4},{2,3,4}}
%e A326365   {{1,3},{2,3},{1,2,4}}
%e A326365   {{1,3},{3,4},{1,2,4}}
%e A326365   {{1,4},{2,4},{1,2,3}}
%e A326365   {{1,4},{3,4},{1,2,3}}
%e A326365   {{2,3},{2,4},{1,3,4}}
%e A326365   {{2,3},{3,4},{1,2,4}}
%e A326365   {{2,4},{3,4},{1,2,3}}
%e A326365   {{1,2},{1,3,4},{2,3,4}}
%e A326365   {{1,3},{1,2,4},{2,3,4}}
%e A326365   {{1,4},{1,2,3},{2,3,4}}
%e A326365   {{2,3},{1,2,4},{1,3,4}}
%e A326365   {{2,4},{1,2,3},{1,3,4}}
%e A326365   {{3,4},{1,2,3},{1,2,4}}
%e A326365   {{1,2},{1,3},{1,4},{2,3,4}}
%e A326365   {{1,2},{2,3},{2,4},{1,3,4}}
%e A326365   {{1,3},{2,3},{3,4},{1,2,4}}
%e A326365   {{1,4},{2,4},{3,4},{1,2,3}}
%e A326365   {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
%t A326365 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A326365 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,4}]
%Y A326365 Intersecting antichain covers are A305844.
%Y A326365 Intersecting covers with empty intersection are A326364.
%Y A326365 Antichain covers with empty intersection are A305001.
%Y A326365 The binomial transform is the non-covering case A326366.
%Y A326365 Covering, intersecting antichains with empty intersection are A326365.
%Y A326365 Cf. A006126, A007363, A014466, A051185, A058891, A305843, A307249, A318128, A318129, A326361, A326362, A326363.
%K A326365 nonn,more
%O A326365 0,5
%A A326365 _Gus Wiseman_, Jul 01 2019
%E A326365 a(7)-a(8) from _Andrew Howroyd_, Aug 14 2019