This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326365 #13 Aug 14 2019 18:22:32 %S A326365 1,0,0,1,23,1834,1367903,229745722873,423295077919493525420 %N A326365 Number of intersecting antichains with empty intersection (meaning there is no vertex in common to all the edges) covering n vertices. %C A326365 Covering means there are no isolated vertices. A set system (set of sets) is an antichain if no part is a subset of any other, and is intersecting if no two parts are disjoint. %e A326365 The a(4) = 23 intersecting antichains with empty intersection: %e A326365 {{1,2},{1,3},{2,3,4}} %e A326365 {{1,2},{1,4},{2,3,4}} %e A326365 {{1,2},{2,3},{1,3,4}} %e A326365 {{1,2},{2,4},{1,3,4}} %e A326365 {{1,3},{1,4},{2,3,4}} %e A326365 {{1,3},{2,3},{1,2,4}} %e A326365 {{1,3},{3,4},{1,2,4}} %e A326365 {{1,4},{2,4},{1,2,3}} %e A326365 {{1,4},{3,4},{1,2,3}} %e A326365 {{2,3},{2,4},{1,3,4}} %e A326365 {{2,3},{3,4},{1,2,4}} %e A326365 {{2,4},{3,4},{1,2,3}} %e A326365 {{1,2},{1,3,4},{2,3,4}} %e A326365 {{1,3},{1,2,4},{2,3,4}} %e A326365 {{1,4},{1,2,3},{2,3,4}} %e A326365 {{2,3},{1,2,4},{1,3,4}} %e A326365 {{2,4},{1,2,3},{1,3,4}} %e A326365 {{3,4},{1,2,3},{1,2,4}} %e A326365 {{1,2},{1,3},{1,4},{2,3,4}} %e A326365 {{1,2},{2,3},{2,4},{1,3,4}} %e A326365 {{1,3},{2,3},{3,4},{1,2,4}} %e A326365 {{1,4},{2,4},{3,4},{1,2,3}} %e A326365 {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} %t A326365 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A326365 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,4}] %Y A326365 Intersecting antichain covers are A305844. %Y A326365 Intersecting covers with empty intersection are A326364. %Y A326365 Antichain covers with empty intersection are A305001. %Y A326365 The binomial transform is the non-covering case A326366. %Y A326365 Covering, intersecting antichains with empty intersection are A326365. %Y A326365 Cf. A006126, A007363, A014466, A051185, A058891, A305843, A307249, A318128, A318129, A326361, A326362, A326363. %K A326365 nonn,more %O A326365 0,5 %A A326365 _Gus Wiseman_, Jul 01 2019 %E A326365 a(7)-a(8) from _Andrew Howroyd_, Aug 14 2019