This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326371 #4 Jul 06 2019 20:57:24 %S A326371 1,1,2,1,1,2,1,1,2,3,2,1,1,1,2,2,2,2,1,1,1,2,2,1,3,2,2,2,2,1,1,1,2,1, %T A326371 1,2,2,2,3,2,2,2,2,2,1,1,1,2,1,1,2,2,1,3,4,3,2,2,2,3,2,2,2,3,2,2,1,1, %U A326371 1,2,1,1,2,1,1,2,3,2,2,1,2,3,2,2,2,2 %N A326371 Irregular triangular array: row n shows the number of condensations needed to convert all the partitions of n to strict partitions. %C A326371 It appears that there is a limiting row and that it includes every positive integer. %H A326371 Clark Kimberling, <a href="/A326371/b326371.txt">Table of n, a(n) for n = 1..10000</a> %e A326371 First seven rows: %e A326371 1 %e A326371 1 2 %e A326371 1 1 2 %e A326371 1 1 2 3 2 %e A326371 1 1 1 2 2 2 2 %e A326371 1 1 1 2 2 1 3 2 2 2 2 %e A326371 1 1 1 2 1 1 2 2 2 3 2 2 2 2 2 %t A326371 f[m_] := Table[Tally[m][[h]][[1]]*Tally[m][[h]][[2]], {h, 1, Length[Tally[m]]}];l %t A326371 m[n_, k_] := IntegerPartitions[n][[k]]; %t A326371 q[n_, k_] := -1 + Length[FixedPointList[f, m[n, k]]]; %t A326371 t = Table[q[n, k], {n, 1, 16}, {k, 1, PartitionsP[n]}] (* A326371, array *) %t A326371 Flatten[t] (* A326371, sequence *) %t A326371 TableForm[t] %Y A326371 Cf. A000009, A000041, A239312, A326370. %K A326371 nonn,tabf,easy %O A326371 1,3 %A A326371 _Clark Kimberling_, Jul 06 2019