This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326372 #8 Jul 02 2019 11:18:15 %S A326372 2,3,5,13,82,2647,1422565,229809982113,423295099074735261881 %N A326372 Number of intersecting antichains of (possibly empty) subsets of {1..n}. %C A326372 A set system (set of sets) is an antichain if no edge is a subset of any other, and is intersecting if no two edges are disjoint. %F A326372 a(n) = A001206(n + 1) + 1. %e A326372 The a(0) = 2 through a(3) = 13 antichains: %e A326372 {} {} {} {} %e A326372 {{}} {{}} {{}} {{}} %e A326372 {{1}} {{1}} {{1}} %e A326372 {{2}} {{2}} %e A326372 {{1,2}} {{3}} %e A326372 {{1,2}} %e A326372 {{1,3}} %e A326372 {{2,3}} %e A326372 {{1,2,3}} %e A326372 {{1,2},{1,3}} %e A326372 {{1,2},{2,3}} %e A326372 {{1,3},{2,3}} %e A326372 {{1,2},{1,3},{2,3}} %Y A326372 The case without empty edges is A001206. %Y A326372 The inverse binomial transform is the spanning case A305844. %Y A326372 The unlabeled case is A306007. %Y A326372 Maximal intersecting antichains are A326363. %Y A326372 Intersecting set systems are A051185. %Y A326372 Cf. A000372, A007363, A014466, A305843, A326361, A326362. %K A326372 nonn,more %O A326372 0,1 %A A326372 _Gus Wiseman_, Jul 01 2019