cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326373 Number of intersecting set systems with empty intersection (meaning there is no vertex in common to all the edges) on n vertices.

This page as a plain text file.
%I A326373 #9 Aug 12 2019 23:04:32
%S A326373 1,1,1,3,435,989555,887050136795,291072121058024908202443,
%T A326373 14704019422368226413236661148207899662350666147,
%U A326373 12553242487939461785560846872353486129110194529637343578112251094358919036718815137721635299
%N A326373 Number of intersecting set systems with empty intersection (meaning there is no vertex in common to all the edges) on n vertices.
%C A326373 A set system (set of sets) is intersecting if no two edges are disjoint.
%F A326373 a(n) = A051185(n) - 1 - Sum_{k=1..n-1} binomial(n,k)*A000371(k). - _Andrew Howroyd_, Aug 12 2019
%e A326373 The a(3) = 3 intersecting set systems with empty intersection:
%e A326373   {}
%e A326373   {{1,2},{1,3},{2,3}}
%e A326373   {{1,2},{1,3},{2,3},{1,2,3}}
%t A326373 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A326373 Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],And[#=={}||Intersection@@#=={}]&]],{n,0,4}]
%Y A326373 The inverse binomial transform is the covering case A326364.
%Y A326373 Set systems with empty intersection are A318129.
%Y A326373 Intersecting set systems are A051185.
%Y A326373 Intersecting antichains with empty intersection are A326366.
%Y A326373 Cf. A000371, A006126, A007363, A014466, A058891, A305844, A307249, A318128, A326361, A326362, A326363, A326365.
%K A326373 nonn
%O A326373 0,4
%A A326373 _Gus Wiseman_, Jul 01 2019
%E A326373 a(6)-a(9) from _Andrew Howroyd_, Aug 12 2019