This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326374 #16 Mar 05 2025 22:04:36 %S A326374 1,3,1,16,1,125,15,1,1296,1,16807,735,140,1,262144,1,4782969,76545, %T A326374 1890,1,100000000,112000,1,2357947691,13835745,33264,1,61917364224,1, %U A326374 1792160394037,3859590735,270670400,35135100,720720,1,56693912375296,1,1946195068359375 %N A326374 Irregular triangle read by rows where T(n,k) is the number of (d + 1)-uniform hypertrees spanning n + 1 vertices, where d = A027750(n,k). %C A326374 A hypertree is a connected hypergraph of density -1, where density is the sum of sizes of the edges minus the number of edges minus the number of vertices. A hypergraph is k-uniform if its edges all have size k. The span of a hypertree is the union of its edges. %H A326374 Alois P. Heinz, <a href="/A326374/b326374.txt">Rows n = 1..185, flattened</a> %F A326374 T(n, k) = n!/(d! * (n/d)!) * ((n + 1)/d)^(n/d - 1), where d = A027750(n, k). %e A326374 Triangle begins: %e A326374 1 %e A326374 3 1 %e A326374 16 1 %e A326374 125 15 1 %e A326374 1296 1 %e A326374 16807 735 140 1 %e A326374 262144 1 %e A326374 4782969 76545 1890 1 %e A326374 100000000 112000 1 %e A326374 2357947691 13835745 33264 1 %e A326374 The T(4,2) = 15 hypertrees: %e A326374 {{1,4,5},{2,3,5}} %e A326374 {{1,4,5},{2,3,4}} %e A326374 {{1,3,5},{2,4,5}} %e A326374 {{1,3,5},{2,3,4}} %e A326374 {{1,3,4},{2,4,5}} %e A326374 {{1,3,4},{2,3,5}} %e A326374 {{1,2,5},{3,4,5}} %e A326374 {{1,2,5},{2,3,4}} %e A326374 {{1,2,5},{1,3,4}} %e A326374 {{1,2,4},{3,4,5}} %e A326374 {{1,2,4},{2,3,5}} %e A326374 {{1,2,4},{1,3,5}} %e A326374 {{1,2,3},{3,4,5}} %e A326374 {{1,2,3},{2,4,5}} %e A326374 {{1,2,3},{1,4,5}} %p A326374 T:= n-> seq(n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1), d=numtheory[divisors](n)): %p A326374 seq(T(n), n=1..20); # _Alois P. Heinz_, Aug 21 2019 %t A326374 Table[n!/(d!*(n/d)!)*((n+1)/d)^(n/d-1),{n,10},{d,Divisors[n]}] %Y A326374 Row sums are A320444. %Y A326374 Column d = 1 is A000272. %Y A326374 Cf. A030019, A027750, A035053, A038041, A052888, A057625, A061095, A121860, A134954, A236696, A262843. %K A326374 nonn,look,tabf %O A326374 1,2 %A A326374 _Gus Wiseman_, Jul 03 2019 %E A326374 Edited by _Peter Munn_, Mar 05 2025