This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326375 #9 Aug 14 2019 18:26:04 %S A326375 2,2,2,3,29,1961,1379274,229755337550,423295079757497714060 %N A326375 Number of intersecting antichains of subsets of {1..n} with empty intersection (meaning there is no vertex in common to all the edges). %C A326375 A set system (set of sets) is an antichain if no edge is a subset of any other, and is intersecting if no two edges are disjoint. %F A326375 a(n) = A326366(n) + 1. %e A326375 The a(4) = 29 antichains: %e A326375 {} %e A326375 {{}} %e A326375 {{1,2},{1,3},{2,3}} %e A326375 {{1,2},{1,4},{2,4}} %e A326375 {{1,3},{1,4},{3,4}} %e A326375 {{2,3},{2,4},{3,4}} %e A326375 {{1,2},{1,3},{2,3,4}} %e A326375 {{1,2},{1,4},{2,3,4}} %e A326375 {{1,2},{2,3},{1,3,4}} %e A326375 {{1,2},{2,4},{1,3,4}} %e A326375 {{1,3},{1,4},{2,3,4}} %e A326375 {{1,3},{2,3},{1,2,4}} %e A326375 {{1,3},{3,4},{1,2,4}} %e A326375 {{1,4},{2,4},{1,2,3}} %e A326375 {{1,4},{3,4},{1,2,3}} %e A326375 {{2,3},{2,4},{1,3,4}} %e A326375 {{2,3},{3,4},{1,2,4}} %e A326375 {{2,4},{3,4},{1,2,3}} %e A326375 {{1,2},{1,3,4},{2,3,4}} %e A326375 {{1,3},{1,2,4},{2,3,4}} %e A326375 {{1,4},{1,2,3},{2,3,4}} %e A326375 {{2,3},{1,2,4},{1,3,4}} %e A326375 {{2,4},{1,2,3},{1,3,4}} %e A326375 {{3,4},{1,2,3},{1,2,4}} %e A326375 {{1,2},{1,3},{1,4},{2,3,4}} %e A326375 {{1,2},{2,3},{2,4},{1,3,4}} %e A326375 {{1,3},{2,3},{3,4},{1,2,4}} %e A326375 {{1,4},{2,4},{3,4},{1,2,3}} %e A326375 {{1,2,3},{1,2,4},{1,3,4},{2,3,4}} %t A326375 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A326375 Table[Length[Select[stableSets[Subsets[Range[n]],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&],#=={}||Intersection@@#=={}&]],{n,0,4}] %Y A326375 The case without empty edges is A326366. %Y A326375 Intersecting antichains are A326372. %Y A326375 Antichains of nonempty sets with empty intersection are A006126 or A307249. %Y A326375 Cf. A001206, A007363, A014466, A051185, A058891, A305001, A305843, A305844, A318128, A318129, A326363, A326365, A326373. %K A326375 nonn,more %O A326375 0,1 %A A326375 _Gus Wiseman_, Jul 03 2019 %E A326375 a(7)-a(8) from _Andrew Howroyd_, Aug 14 2019