cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326377 For any number n > 0, let f(n) be the polynomial of a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials of a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; a(n) = g(f(n) o f(n)) (where o denotes function composition).

This page as a plain text file.
%I A326377 #10 Jul 06 2019 02:20:51
%S A326377 1,2,3,4,11,12,29,8,81,1100,59,48,101,195478444,40425,16,157,648,229,
%T A326377 440000,64240097649,1445390468875226977004,313,192,214358881,
%U A326377 44574662297516497591170630280506162081362246142404,19683,9921285858330292941824,421,72765000,547,32
%N A326377 For any number n > 0, let f(n) be the polynomial of a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials of a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; a(n) = g(f(n) o f(n)) (where o denotes function composition).
%C A326377 This sequence is the main diagonal of A326376.
%F A326377 a(n) = A326376(n, n).
%F A326377 a(2^k) = 2^k for any k >= 0.
%F A326377 a(3^k) = A060722(k) for any k >= 0.
%F A326377 a(prime(k)) = A243896(k) for any k >= 1 (where prime(k) denotes the k-th prime number).
%e A326377 The first terms, alongside the corresponding polynomials, are:
%e A326377   n   a(n)  f(n)   f(n) o f(n)
%e A326377   --  ----  -----  -----------
%e A326377    1     1      0            0
%e A326377    2     2      1            1
%e A326377    3     3      x            x
%e A326377    4     4      2            2
%e A326377    5    11    x^2          x^4
%e A326377    6    12    x+1          x+2
%e A326377    7    29    x^3          x^9
%e A326377    8     8      3            3
%e A326377    9    81    2*x          4*x
%e A326377   10  1100  x^2+1  x^4+2*x^2+2
%e A326377   11    59    x^4         x^16
%e A326377   12    48    x+2          x+4
%o A326377 (PARI) g(p) = my (c=Vecrev(Vec(p))); prod (i=1, #c, if (c[i], prime(i)^c[i], 1))
%o A326377 f(n, v='x) = my (f=factor(n)); sum (i=1, #f~, f[i, 2] * v^(primepi(f[i, 1]) - 1))
%o A326377 a(n) = g(f(n, f(n)))
%Y A326377 Cf. A060722, A243896, A326376.
%K A326377 nonn
%O A326377 1,2
%A A326377 _Rémy Sigrist_, Jul 02 2019