cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326384 Oblong composite numbers m such that beta(m) = tau(m)/2 - 1 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

42, 156, 182, 342, 1406, 1640, 6162, 7140, 14280, 14762, 20880, 25440, 29412, 32942, 33306, 47742, 48620, 49952, 61256, 67860, 95172, 95790, 158802, 176820, 191406, 202950, 209306, 257556, 296480, 297570
Offset: 1

Views

Author

Bernard Schott, Jul 10 2019

Keywords

Comments

The number of Brazilian representations of an oblong number m with repdigits of length = 2 is beta'(n) = tau(n)/2 - 2.
This sequence is the second subsequence of A326379: oblong numbers that have only one Brazilian representation with three digits or more.
Prime 2 is oblong and satisfies also beta(2) = tau(2)/2 - 1 = 0 but non-Brazilian primes are in A220627.

Examples

			There are two types of such numbers:
1) m is repunit with 3 digits or more in only one base:
156 = 12 * 13 = 1111_5 = 66_25 = 44_38 = 33_51 = 22_77 with tau(156) = 12 and beta(156) = 5.
2) m is repdigit with 3 digits or more and digit >= 2 in only one base:
tau(m) = 8 and beta(m) = 3:  42 = 6*7 = 222_4 = 33_13 = 22_20,
tau(m) = 12 and beta(m)= 5:  342 = 18*19 = 666_7 = 99_37 = 66_56 = 33_113 = 22_170,
tau(m) = 16 and beta(m)= 7: 1640 = 40*41 = 2222_9 = (20,20)_81 = (10,10)_2 = 88_204 = 55_327 = 44_409 = 22_819.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A002378 (oblong numbers) and of A167782.
Cf. A326378 (oblongs with tau(m)/2 - 2), A326385 (oblongs with tau(m)/2), A309062 (oblongs with tau(m)/2 + k, k >= 1).