cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326385 Oblong numbers m such that beta(m) = tau(m)/2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

3906, 37830, 97656, 132860, 1206702, 2441406, 6034392, 10761680, 21441530, 96855122, 148705830, 203932680, 322866992, 747612306, 871696100, 1187526060, 1525878906, 1743939360, 2075941406, 3460321800, 5541090282, 8574111812, 9455714840, 12880093590, 18854722656
Offset: 1

Views

Author

Bernard Schott, Jul 10 2019

Keywords

Comments

The number of Brazilian representations of an oblong number m with repdigits of length = 2 is beta'(n) = tau(n)/2 - 2.
This sequence is the second subsequence of A326380: oblong numbers that have exactly two Brazilian representations with three digits or more.

Examples

			3906 = 62 * 63 is oblong, tau(3906) = 24, beta(3906) = 12 with beta'(3906) = 10 and beta"(3906) = 2: 3906 = 111111_5 = 666_25 = (42,42)_92 = (31,31)_125 = (21,21)_185 = (18,18)_216 = (14,14)_278 = 99_433 = 77_557 = 66_650 = 33_130 = 22_1952.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A002378 (oblong numbers) and of A167783.
Cf. A326378 (oblongs with tau(m)/2 - 2), A326384 (oblongs with tau(m)/2 - 1), A309062 (oblongs with tau(m)/2 + k, k >= 1).

Extensions

a(6)-a(25) from Giovanni Resta, Jul 11 2019