A326391 Lesser of twin primes p >= 3 for which sigma(p+1)/sigma(p-1) reaches record value, where sigma(n) is the divisor sum function (A000203).
3, 7559, 42839, 55439, 110879, 415799, 1713599, 1940399, 2489759, 6652799, 6846839, 15855839, 31600799, 85765679, 232792559, 845404559, 1470268799, 6299092799, 10708457759, 17459441999, 32125373279, 135019684799, 439977938399, 449755225919, 1799020903679, 2126560035599, 2835413380799, 6278415343199
Offset: 1
Keywords
Examples
The values of sigma(p+1)/sigma(p-1) for the first terms are 2.333... < 2.539... < 2.621... < 2.734... < 2.836...
Links
- Stephan Ramon Garcia, Florian Luca, Kye Shi, Gabe Udell, Primitive root bias for twin primes II: Schinzel-type theorems for totient quotients and the sum-of-divisors function, arXiv:1906.05927 [math.NT], 2019.
- Wikipedia, Dickson's conjecture.
Programs
-
Mathematica
s = {}; rm = 0; p = 2; Do[q = NextPrime[p]; If[q - p != 2, p = q; Continue[]]; r = DivisorSigma[1, p + 1]/DivisorSigma[1, p - 1]; If[r > rm, rm = r; AppendTo[s, p]]; p = q, {10^6}]; s
Extensions
a(22)-a(28) from Giovanni Resta, Nov 01 2019
Comments