This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326405 #41 Feb 28 2020 02:07:34 %S A326405 3,-1,-1,3,-1,2,-1,4,4,0,-1,4,-1,2,0,3,-1,3,-1,1,0,2,-1,3,3,1,1,0,-1, %T A326405 3,-1,2,2,1,2,0,-1,3,3,2,-1,2,-1,2,0,2,-1,2,3,2,3,2,-1,1,0,1,2,2,-1,3, %U A326405 -1,2,2,1,1,0,-1,1,1,3,-1,3,-1,1,2,1,2,0 %N A326405 Minesweeper sequence of positive integers arranged on a 2D grid along ascending antidiagonals. %C A326405 Map the positive integers on a 2D grid starting with 1 in top left corner and continue along increasing antidiagonals. %C A326405 Replace each prime with -1 and each nonprime with the number of primes in adjacent grid cells around it. %C A326405 If n is the original number, a(n) is the number that replaces it. %C A326405 This sequence treats prime numbers as "mines" and fills gaps according to the rules of the classic Minesweeper game. %C A326405 a(n) < 5 (conjectured). %C A326405 Set of n such that a(n) = 4 is unbounded (conjectured). %H A326405 Michael De Vlieger, <a href="/A326405/b326405.txt">Table of n, a(n) for n = 1..11325</a> (150 antidiagonals). %H A326405 Michael De Vlieger, <a href="/A326405/a326405.png">Minesweeper-style graph</a> read along original mapping, replacing -1 with a "mine", and 0 with blank space. %H A326405 Michael De Vlieger, <a href="/A326405/a326405_1.png">Square plot of a million terms</a> read along original mapping, with black indicating a prime and levels of gray commensurate to a(n). %H A326405 Witold Tatkiewicz, <a href="https://pastebin.com/pTPNEuzd">link for Java program</a> %H A326405 Wikipedia, <a href="https://en.wikipedia.org/wiki/Minesweeper_(video_game)">Minesweeper game</a> %e A326405 Consider positive integers distributed on the plane along antidiagonals: %e A326405 1 2 4 7 11 16 ... %e A326405 3 5 8 12 17 ... %e A326405 6 9 13 18 ... %e A326405 10 14 19 ... %e A326405 15 20 ... %e A326405 21 ... %e A326405 ... %e A326405 1 is not prime and in its adjacent grid cells there are 3 primes: 2, 3 and 5. Therefore a(1) = 3. %e A326405 2 is prime, therefore a(2) = -1. %e A326405 8 is not prime and in adjacent grid cells there are 4 primes: 2, 5, 7 and 13. Therefore a(8) = 4. %e A326405 From _Michael De Vlieger_, Oct 01 2019: (Start) %e A326405 Replacing n with a(n) in the plane described above, and using "." for a(n) = 0 and "*" for negative a(n), we produce a graph resembling Minesweeper, where the mines are situated at prime n: %e A326405 3 * 3 * * 3 2 * * 2 1 * ... %e A326405 * * 4 4 * * 3 3 * 2 1 2 %e A326405 2 4 * 3 3 * 3 2 2 1 1 1 %e A326405 . 2 * 3 2 2 3 * 3 1 1 * %e A326405 . 1 1 2 * 2 3 * * 2 1 1 %e A326405 . 1 1 2 3 * 3 3 * 3 1 . %e A326405 . 2 * 2 2 * 3 2 3 * 2 1 %e A326405 . 2 * 2 1 1 2 * 2 1 3 * %e A326405 . 1 1 2 1 1 1 2 3 2 3 * %e A326405 . 1 1 2 * 2 1 1 * * 2 2 %e A326405 . 2 * 3 2 * 1 1 2 2 1 1 %e A326405 . 2 * 3 2 2 1 1 1 1 . 1 %e A326405 ... (End) %t A326405 Block[{n = 12, s}, s = ArrayPad[Array[1 + PolygonalNumber[#1 + #2 - 1] - #2 &, {# + 1, # + 1}], 1] &@ n; Table[If[PrimeQ@ m, -1, Count[#, _?PrimeQ] &@ Union@ Map[s[[#1, #2]] & @@ # &, Join @@ Array[FirstPosition[s, m] + {##} - 2 &, {3, 3}]]], {m, PolygonalNumber@ n}]] (* _Michael De Vlieger_, Sep 30 2019 *) %o A326405 (Java) See Links section. %Y A326405 Different arrangements of integers: %Y A326405 Cf. A326406 - triangle maze, %Y A326405 Cf. A326407 - square mapping, %Y A326405 Cf. A326408 - square maze, %Y A326405 Cf. A326409 - Hamiltonian path, %Y A326405 Cf. A326410 - Ulam's spiral. %K A326405 sign,tabl %O A326405 1,1 %A A326405 _Witold Tatkiewicz_, Sep 26 2019