This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326410 #20 Mar 20 2020 23:36:57 %S A326410 4,-1,-1,3,-1,3,-1,3,3,2,-1,5,-1,2,2,2,-1,3,-1,3,3,2,-1,2,1,0,2,3,-1, %T A326410 3,-1,3,3,1,2,2,-1,3,3,2,-1,3,-1,1,1,2,-1,2,1,1,1,1,-1,2,3,2,2,2,-1,2, %U A326410 -1,2,2,1,3,3,-1,1,2,3,-1,4,-1,3,2,0,1,2,-1,1,1 %N A326410 Minesweeper sequence of positive integers arranged on a square spiral on a 2D grid. %C A326410 Place positive integers on a 2D grid starting with 1 in the center and continue along a spiral. %C A326410 Replace each prime with -1 and each nonprime with the number of primes in adjacent grid cells around it. %C A326410 n is replaced by a(n). %C A326410 This sequence treats prime numbers as "mines" and fills gaps according to the rules of the classic Minesweeper game. %C A326410 a(n) = 5 for n = 12. %C A326410 Set of n such that a(n) = 4 is unbounded (conjecture). %H A326410 Michael De Vlieger, <a href="/A326410/b326410.txt">Table of n, a(n) for n = 1..10201</a> (51 spiral iterations). %H A326410 Michael De Vlieger, <a href="/A326410/a326410.png">Minesweeper-style graph</a> read along original mapping, replacing -1 with a "mine", and 0 with blank space. %H A326410 Michael De Vlieger, <a href="/A326410/a326410_1.png">Square plot of 10^3 spiral iterations</a> read along original mapping, with black indicating a prime and levels of gray commensurate to a(n). %H A326410 Wikipedia, <a href="https://en.wikipedia.org/wiki/Minesweeper_(video_game)">Minesweeper game</a> %e A326410 Consider positive integers distributed onto the plane along the square spiral: %e A326410 . %e A326410 37--36--35--34--33--32--31 %e A326410 | | %e A326410 38 17--16--15--14--13 30 %e A326410 | | | | %e A326410 39 18 5---4---3 12 29 %e A326410 | | | | | | %e A326410 40 19 6 1---2 11 28 %e A326410 | | | | | %e A326410 41 20 7---8---9--10 27 %e A326410 | | | %e A326410 42 21--22--23--24--25--26 %e A326410 | %e A326410 43--44--45--46--47--48--49--... %e A326410 . %e A326410 1 is not prime and in adjacent grid cells there are 4 primes: 2, 3, 5 and 7. Therefore a(1) = 4. %e A326410 2 is prime, therefore a(2) = -1. %e A326410 8 is not prime and in adjacent grid cells there are 4 primes: 2, 7 and 23. Therefore a(8) = 3. %e A326410 Replacing n with a(n) in the plane described above, and using "." for a(n) = 0 and "*" for negative a(n), we produce a graph resembling Minesweeper, where the mines are situated at prime n: %e A326410 *---2---2---1---3---3---* %e A326410 | | %e A326410 3 *---2---2---2---* 3 %e A326410 | | | | %e A326410 3 3 *---3---* 5 * %e A326410 | | | | | | %e A326410 2 * 3 4---* * 3 %e A326410 | | | | | %e A326410 * 3 *---3---3---2 2 %e A326410 | | | %e A326410 3 3---2---*---2---1---. %e A326410 | %e A326410 *---1---1---2---*---2---1---... %e A326410 In order to produce the sequence, the graph is read along the square spiral. %Y A326410 Cf. A136626 - similar sequence: For every number n in Ulam's spiral the sequence gives the number of primes around it (number n excluded). %Y A326410 Cf. A136627 - similar sequence: For every number n in Ulam's spiral the sequence gives the number of primes around it (number n included). %Y A326410 Different arrangements of integers: %Y A326410 Cf. A326405 (antidiagonals), A326406 (triangle maze), A326407 (square mapping), A326408 (square maze), A326409 (Hamiltonian path). %K A326410 sign,tabl %O A326410 1,1 %A A326410 _Witold Tatkiewicz_, Oct 07 2019