cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326419 a(n) is the number of distinct Horadam sequences of period n.

This page as a plain text file.
%I A326419 #35 May 10 2025 02:37:25
%S A326419 1,1,3,5,10,11,21,22,33,34,55,46,78,69,92,92,136,105,171,140,186,175,
%T A326419 253,188,290,246,315,282,406,284,465,376,470,424,564,426,666,531,660,
%U A326419 568,820,570,903,710,852,781,1081,760,1155,890,1136,996,1378,963,1420,1140
%N A326419 a(n) is the number of distinct Horadam sequences of period n.
%H A326419 Robert Israel, <a href="/A326419/b326419.txt">Table of n, a(n) for n = 1..10000</a>
%H A326419 Ovidiu D. Bagdasar and Peter J. Larcombe, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/51-4/BagdasarLarcombe.pdf">On the Number of Complex Horadam Sequences with a Fixed Period</a>, Fib. Q. 51(4), 2013, 339-347.
%F A326419 a(n) = Sum_{k1<k2, lcm(k1, k2)=n} phi(k1)*phi(k2) + phi(n)*(phi(n)-1)/2, for n>= 2. See link.
%p A326419 N:= 200: # for a(1)..a(N)
%p A326419 V:= Vector(N,n -> numtheory:-phi(n)*(numtheory:-phi(n)-1)/2):
%p A326419 for k1 from 1 to N do
%p A326419   p1:= numtheory:-phi(k1);
%p A326419   for k2 from k1+1 to N do
%p A326419      n:= ilcm(k1,k2);
%p A326419      if n <= N then V[n]:= V[n] + p1*numtheory:-phi(k2) fi;
%p A326419   od:
%p A326419 od:
%p A326419 V[1]:= 1:
%p A326419 convert(V,list); # _Robert Israel_, Dec 06 2020
%o A326419 (PARI) a(n) = if (n==1, 1, eulerphi(n)*(eulerphi(n)-1)/2 + sum(k2=1, n, sum(k1=1, k2-1, if (lcm(k1, k2)==n, eulerphi(k1)*eulerphi(k2)))));
%o A326419 (Python)
%o A326419 from math import comb
%o A326419 from sympy import mobius, divisors
%o A326419 def A326419(n): return sum(mobius(d)*comb(n//d,2) for d in divisors(n,generator=True)) if n>1 else 1 # _Chai Wah Wu_, May 09 2025
%Y A326419 Cf. A102309.
%K A326419 nonn
%O A326419 1,3
%A A326419 _Michel Marcus_, Sep 30 2019