This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326441 #19 Oct 09 2019 04:29:21 %S A326441 0,1,0,1,0,1,1,1,1,1,3,1,2,1,3,3,3,3,1,4,4,3,2,2,4,3,5,3,2,4,5,4,5,6, %T A326441 1,4,2,5,4,7,4,4,3,3,6,14,3,4,10,6,3,6,4,4,4,8,7,6,8,7,10,5,11,8,5,11, %U A326441 4,7,7,5,8,12,5,6,9,8,11,8,5,8,9,8,10,8 %N A326441 Number of subsets of {1..n} whose sum is equal to the product of their complement. %C A326441 Essentially the same as A178830. - _R. J. Mathar_, Jul 12 2019 %H A326441 Giovanni Resta, <a href="/A326441/b326441.txt">Table of n, a(n) for n = 0..500</a> %e A326441 The initial terms count the following subsets: %e A326441 1: {1} %e A326441 3: {1,2} %e A326441 5: {3,5} %e A326441 6: {3,4,5} %e A326441 7: {2,4,5,7} %e A326441 8: {2,4,5,6,7} %e A326441 9: {2,3,5,6,7,9} %e A326441 10: {4,5,6,8,9,10} %e A326441 10: {2,3,5,6,7,8,9} %e A326441 10: {1,2,3,4,5,8,9,10} %e A326441 Also the number of subsets of {1..n} whose product is equal to the sum of their complement. For example, the initial terms count the following subsets: %e A326441 1: {} %e A326441 3: {3} %e A326441 5: {1,2,4} %e A326441 6: {1,2,6} %e A326441 7: {1,3,6} %e A326441 8: {1,3,8} %e A326441 9: {1,4,8} %e A326441 10: {6,7} %e A326441 10: {1,4,10} %e A326441 10: {1,2,3,7} %p A326441 b:= proc(n, s, p) %p A326441 `if`(s=p, 1, `if`(n<1, 0, b(n-1, s, p)+ %p A326441 `if`(s-n<p*n, 0, b(n-1, s-n, p*n)))) %p A326441 end: %p A326441 a:= n-> b(n, n*(n+1)/2, 1): %p A326441 seq(a(n), n=0..100); # _Alois P. Heinz_, Jul 12 2019 %t A326441 Table[Length[Select[Subsets[Range[n]],Plus@@#==Times@@Complement[Range[n],#]&]],{n,0,10}] %Y A326441 Cf. A028422, A053632, A059529, A063865, A178830, A301987, A325044, A325538, A326172, A326173, A326174, A326175, A326179, A326180. %K A326441 nonn %O A326441 0,11 %A A326441 _Gus Wiseman_, Jul 07 2019 %E A326441 a(21)-a(83) from _Giovanni Resta_, Jul 08 2019