cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326469 Sum of the fifth largest parts of the partitions of n into 9 parts.

This page as a plain text file.
%I A326469 #7 Nov 07 2020 12:38:51
%S A326469 0,0,0,0,0,0,0,0,0,1,1,2,3,5,8,13,19,29,42,60,83,117,158,216,288,383,
%T A326469 500,655,840,1080,1371,1734,2172,2718,3364,4157,5099,6235,7574,9184,
%U A326469 11059,13294,15895,18955,22501,26657,31432,36991,43368,50731,59138,68811
%N A326469 Sum of the fifth largest parts of the partitions of n into 9 parts.
%H A326469 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A326469 a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} l.
%F A326469 a(n) = A326464(n) - A326465(n) - A326466(n) - A326467(n) - A326468(n) - A326470(n) - A326471(n) - A326472(n) - A326473(n).
%t A326469 Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[l, {i, j, Floor[(n - j - k - l - m - o - p - q)/2]}], {j, k, Floor[(n - k - l - m - o - p - q)/3]}], {k, l, Floor[(n - l - m - o - p - q)/4]}], {l, m, Floor[(n - m - o - p - q)/5]}], {m, o, Floor[(n - o - p - q)/6]}], {o, p, Floor[(n - p - q)/7]}], {p, q, Floor[(n - q)/8]}], {q, Floor[n/9]}], {n, 0, 50}]
%t A326469 Table[Total[IntegerPartitions[n,{9}][[All,-5]]],{n,0,60}] (* _Harvey P. Dale_, Nov 07 2020 *)
%Y A326469 Cf. A026815, A326464, A326465, A326466, A326467, A326468, A326470, A326471, A326472, A326473.
%K A326469 nonn
%O A326469 0,12
%A A326469 _Wesley Ivan Hurt_, Jul 10 2019