cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326476 A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^n, for m = 2, n >= 0, k >= 0; square array read by descending antidiagonals.

This page as a plain text file.
%I A326476 #29 May 11 2025 10:31:09
%S A326476 1,0,1,0,1,1,0,1,2,1,0,1,8,3,1,0,1,32,21,4,1,0,1,128,183,40,5,1,0,1,
%T A326476 512,1641,544,65,6,1,0,1,2048,14763,8320,1205,96,7,1,0,1,8192,132861,
%U A326476 131584,26465,2256,133,8,1,0,1,32768,1195743,2099200,628805,64896,3787,176,9,1
%N A326476 A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^n, for m = 2, n >= 0, k >= 0; square array read by descending antidiagonals.
%F A326476 A(n,k) = (2*k)! * [x^(2*k)] cosh(x)^n. - _Seiichi Manyama_, May 11 2025
%e A326476 Array starts:
%e A326476   [0] 1, 0,   0,    0,      0,        0,          0,            0, ... A000007
%e A326476   [1] 1, 1,   1,    1,      1,        1,          1,            1, ... A000012
%e A326476   [2] 1, 2,   8,   32,    128,      512,       2048,         8192, ... A081294
%e A326476   [3] 1, 3,  21,  183,   1641,    14763,     132861,      1195743, ... A054879
%e A326476   [4] 1, 4,  40,  544,   8320,   131584,    2099200,     33562624, ... A092812
%e A326476   [5] 1, 5,  65, 1205,  26465,   628805,   15424865,    382964405, ... A121822
%e A326476   [6] 1, 6,  96, 2256,  64896,  2086656,   71172096,   2499219456, ...
%e A326476   [7] 1, 7, 133, 3787, 134953,  5501167,  243147373,  11266376947, ...
%e A326476   [8] 1, 8, 176, 5888, 250496, 12397568,  676591616,  39316226048, ...
%e A326476   [9] 1, 9, 225, 8649, 427905, 24943689, 1624354785, 114066126729, ...
%e A326476         A000567,
%e A326476 Seen as a triangle:
%e A326476   1;
%e A326476   0, 1;
%e A326476   0, 1,    1;
%e A326476   0, 1,    2,      1;
%e A326476   0, 1,    8,      3,      1;
%e A326476   0, 1,   32,     21,      4,     1;
%e A326476   0, 1,  128,    183,     40,     5,    1;
%e A326476   0, 1,  512,   1641,    544,    65,    6,   1;
%e A326476   0, 1, 2048,  14763,   8320,  1205,   96,   7, 1;
%e A326476   0, 1, 8192, 132861, 131584, 26465, 2256, 133, 8, 1;
%t A326476 (* The function MLPower is defined in A326327. *)
%t A326476 For[n = 0, n < 8, n++, Print[MLPower[2, n, 8]]]
%o A326476 (Sage) # uses[MLPower from A326327]
%o A326476 for n in (0..6): print(MLPower(2, n, 9))
%o A326476 (PARI) a(n, k) = (2*k)!*polcoef(cosh(x+x*O(x^(2*k)))^n, 2*k); \\ _Seiichi Manyama_, May 11 2025
%Y A326476 Rows n=0..5 give A000007, A000012, A081294, A054879, A092812, A121822.
%Y A326476 Columns include: A000567.
%Y A326476 Main diagonal gives A381459.
%Y A326476 Variant: A286899.
%Y A326476 Cf. A326474 (m=3, p>=0), A326475 (m=3, p<=0), A326327 (m=2, p<=0), this sequence (m=2, p>=0).
%K A326476 nonn,tabl
%O A326476 0,9
%A A326476 _Peter Luschny_, Jul 08 2019