A326479 T(n, k) = 2^n * n! * [x^k] [z^n] (exp(z) + 1)^2/(4*exp(x*z)), triangle read by rows, for 0 <= k <= n.
1, 2, -2, 6, -8, 4, 20, -36, 24, -8, 72, -160, 144, -64, 16, 272, -720, 800, -480, 160, -32, 1056, -3264, 4320, -3200, 1440, -384, 64, 4160, -14784, 22848, -20160, 11200, -4032, 896, -128, 16512, -66560, 118272, -121856, 80640, -35840, 10752, -2048, 256
Offset: 0
Examples
[0] [ 1] [1] [ 2, -2] [2] [ 6, -8, 4] [3] [ 20, -36, 24, -8] [4] [ 72, -160, 144, -64, 16] [5] [ 272, -720, 800, -480, 160, -32] [6] [ 1056, -3264, 4320, -3200, 1440, -384, 64] [7] [ 4160, -14784, 22848, -20160, 11200, -4032, 896, -128] [8] [16512, -66560, 118272, -121856, 80640, -35840, 10752, -2048, 256] [9] [65792, -297216, 599040, -709632, 548352, -290304, 107520, -27648, 4608, -512]
Programs
-
Maple
IE2 := proc(n) (exp(z) + 1)^2/(4*exp(x*z)); series(%, z, 48); 2^n*n!*coeff(%, z, n) end: for n from 0 to 9 do PolynomialTools:-CoefficientList(IE2(n), x) od;
-
Mathematica
T[n_, k_] := 2^n n! SeriesCoefficient[(E^z + 1)^2/(4 E^(x z)), {x, 0, k}, {z, 0, n}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)