cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326482 a(n) = E2_{n}(-1) with E2_{n} the polynomials defined in A326480.

This page as a plain text file.
%I A326482 #9 Jul 23 2019 08:21:13
%S A326482 1,-4,14,-40,80,-64,-16,-1600,8960,29696,-349696,-1423360,22384640,
%T A326482 89440256,-1903691776,-7615160320,209865605120,839460847616,
%U A326482 -29088884064256,-116355542548480,4951498057318400,19805992204107776,-1015423886490075136
%N A326482 a(n) = E2_{n}(-1) with E2_{n} the polynomials defined in A326480.
%C A326482 For comments see A326480.
%p A326482 # The function E2(n) is defined in A326480.
%p A326482 seq(subs(x=-1, E2(n)), n=0..22);
%t A326482 T[n_, k_] := 2^n n! SeriesCoefficient[4 Exp[x z]/(Exp[z] + 1)^2, {z, 0, n}, {x, 0, k}]; Table[Sum[(-1)^k T[n, k], {k, 0, n}], {n, 0, 22}] (* _Jean-François Alcover_, Jul 23 2019 *)
%Y A326482 Cf. A326480, A155585, A326481, A326482, A326483, A326484.
%K A326482 sign
%O A326482 0,2
%A A326482 _Peter Luschny_, Jul 12 2019