A326485 T(n, k) = 2^A050605(n) * n! * [x^k] [z^n] (4*exp(x*z))/(exp(z) + 1)^2, triangle read by rows, for 0 <= k <= n.
1, -1, 1, 1, -4, 2, 1, 3, -6, 2, -1, 2, 3, -4, 1, -1, -5, 5, 5, -5, 1, 17, -24, -60, 40, 30, -24, 4, 17, 119, -84, -140, 70, 42, -28, 4, -31, 34, 119, -56, -70, 28, 14, -8, 1, -31, -279, 153, 357, -126, -126, 42, 18, -9, 1, 691, -620, -2790, 1020, 1785, -504, -420, 120, 45, -20, 2
Offset: 0
Examples
Triangle starts: [0] [ 1] [1] [ -1, 1] [2] [ 1, -4, 2] [3] [ 1, 3, -6, 2] [4] [ -1, 2, 3, -4, 1] [5] [ -1, -5, 5, 5, -5, 1] [6] [ 17, -24, -60, 40, 30, -24, 4] [7] [ 17, 119, -84, -140, 70, 42, -28, 4] [8] [-31, 34, 119, -56, -70, 28, 14, -8, 1] [9] [-31, -279, 153, 357, -126, -126, 42, 18, -9, 1]
Programs
-
Maple
E2n := proc(n) (4*exp(x*z))/(exp(z) + 1)^2; series(%, z, 48); 2^A050605(n)*n!*coeff(%, z, n) end: for n from 0 to 9 do PolynomialTools:-CoefficientList(E2n(n), x) od;
Comments