This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326489 #40 Jun 27 2022 23:34:34 %S A326489 1,1,2,4,6,12,22,44,88,136,252,504,896,1792,3392,6352,9720,19440, %T A326489 35664,71328,129952,247232,477664,955328,1700416,2657280,5184000, %U A326489 10368000,19407360,38814720,68868352,137736704,260693504,505830400,999641600,1882820608,2807196672 %N A326489 Number of product-free subsets of {1..n}. %C A326489 A set is product-free if it contains no product of two (not necessarily distinct) elements. %H A326489 Fausto A. C. Cariboni, <a href="/A326489/b326489.txt">Table of n, a(n) for n = 0..167</a>, (terms up to a(100) from Andrew Howroyd) %H A326489 Marcel K. Goh and Jonah Saks, <a href="https://arxiv.org/abs/2206.12535">Alternating-sum statistics for certain sets of integers</a>, arXiv:2206.12535 [math.CO], 2022. %H A326489 Andrew Howroyd, <a href="/A326489/a326489.txt">PARI Program</a> %e A326489 The a(0) = 1 through a(6) = 22 subsets: %e A326489 {} {} {} {} {} {} {} %e A326489 {2} {2} {2} {2} {2} %e A326489 {3} {3} {3} {3} %e A326489 {2,3} {4} {4} {4} %e A326489 {2,3} {5} {5} %e A326489 {3,4} {2,3} {6} %e A326489 {2,5} {2,3} %e A326489 {3,4} {2,5} %e A326489 {3,5} {2,6} %e A326489 {4,5} {3,4} %e A326489 {2,3,5} {3,5} %e A326489 {3,4,5} {3,6} %e A326489 {4,5} %e A326489 {4,6} %e A326489 {5,6} %e A326489 {2,3,5} %e A326489 {2,5,6} %e A326489 {3,4,5} %e A326489 {3,4,6} %e A326489 {3,5,6} %e A326489 {4,5,6} %e A326489 {3,4,5,6} %t A326489 Table[Length[Select[Subsets[Range[n]],Intersection[#,Times@@@Tuples[#,2]]=={}&]],{n,10}] %Y A326489 Product-closed subsets are A326076. %Y A326489 Subsets containing no products are A326114. %Y A326489 Subsets containing no products of distinct elements are A326117. %Y A326489 Subsets containing no quotients are A327591. %Y A326489 Maximal product-free subsets are A326496. %Y A326489 Cf. A007865, A051026, A326023, A326081, A326116, A326495. %K A326489 nonn %O A326489 0,3 %A A326489 _Gus Wiseman_, Jul 09 2019 %E A326489 a(21)-a(36) from _Andrew Howroyd_, Aug 25 2019 %E A326489 a(0)=1 prepended to data, example and b-file by _Peter Kagey_, Sep 18 2019