This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326490 #21 Oct 24 2020 02:30:54 %S A326490 1,2,3,5,7,12,18,31,46,72,102,172,259,428,607,989,1329,2142,3117,4953, %T A326490 6956,11032,15321,23979,33380,48699,66849,104853,144712,220758,304133, %U A326490 461580,636556,973843,1316513,1958828,2585433,3882843,5237093,7884277,10555739,15729293 %N A326490 Number of subsets of {1..n} containing no differences or quotients of pairs of distinct elements. %H A326490 Fausto A. C. Cariboni, <a href="/A326490/b326490.txt">Table of n, a(n) for n = 0..90</a> %F A326490 For n > 0, a(n) = A326495(n) + 1. %e A326490 The a(0) = 1 through a(6) = 18 subsets: %e A326490 {} {} {} {} {} {} {} %e A326490 {1} {1} {1} {1} {1} {1} %e A326490 {2} {2} {2} {2} {2} %e A326490 {3} {3} {3} {3} %e A326490 {2,3} {4} {4} {4} %e A326490 {2,3} {5} {5} %e A326490 {3,4} {2,3} {6} %e A326490 {2,5} {2,3} %e A326490 {3,4} {2,5} %e A326490 {3,5} {2,6} %e A326490 {4,5} {3,4} %e A326490 {3,4,5} {3,5} %e A326490 {4,5} %e A326490 {4,6} %e A326490 {5,6} %e A326490 {2,5,6} %e A326490 {3,4,5} %e A326490 {4,5,6} %t A326490 Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Divide@@@Reverse/@Subsets[#,{2}],Subtract@@@Reverse/@Subsets[#,{2}]]]=={}&]],{n,0,10}] %o A326490 (PARI) %o A326490 a(n)={ %o A326490 my(recurse(k, b)= %o A326490 if(k > n, 1, %o A326490 my(t = self()(k + 1, b)); %o A326490 for(i=1, k\2, if(bittest(b,i) && (bittest(b,k-i) || (!(k%i) && bittest(b,k/i))), return(t))); %o A326490 t += self()(k + 1, b + (1<<k)); %o A326490 t); %o A326490 ); %o A326490 if(n, recurse(2, 0)) + 1; %o A326490 } \\ _Andrew Howroyd_, Aug 25 2019 %Y A326490 Subsets without difference are A007865. %Y A326490 Maximal subsets without differences or quotients are A326491. %Y A326490 Subsets without quotients are A327591. %Y A326490 Subsets with differences and quotients are A326494. %Y A326490 Cf. A051026, A054519, A325860, A326023, A326079, A326489. %K A326490 nonn %O A326490 0,2 %A A326490 _Gus Wiseman_, Jul 09 2019 %E A326490 a(19)-a(41) from _Andrew Howroyd_, Aug 25 2019