This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326492 #11 Sep 18 2019 04:05:36 %S A326492 1,1,2,2,3,3,4,4,4,5,7,7,10,10,16,18,31,31,47,47,52,62,104,104,130, %T A326492 159,283,283,323,323,554,554,616,690,1248,1366,1871,1871,3567,3759, %U A326492 5245,5245,8678,8678,9808,12148,23352,23352,27470,31695,45719,47187,54595,54595,95383,108199 %N A326492 Number of maximal subsets of {1..n} containing no quotients of pairs of distinct elements. %F A326492 a(n) = A326496(n) + 1 for n > 1. - _Andrew Howroyd_, Aug 30 2019 %e A326492 The a(0) = 1 through a(9) = 5 subsets: %e A326492 {} {1} {1} {1} {1} {1} {1} {1} {1} {1} %e A326492 {2} {23} {23} {235} {235} {2357} {23578} {23578} %e A326492 {34} {345} {256} {2567} {25678} {256789} %e A326492 {3456} {34567} {345678} {345678} %e A326492 {456789} %t A326492 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A326492 Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Divide@@@Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]]=={}&]]],{n,0,10}] %Y A326492 Subsets with quotients are A326023. %Y A326492 Subsets with quotients > 1 are A326079. %Y A326492 Subsets without quotients are A327591. %Y A326492 Maximal subsets without differences or quotients are A326491. %Y A326492 Maximal subsets without quotients (or products) are A326496. %Y A326492 Cf. A007865, A121269, A325860, A325994, A326117, A326489, A326490. %K A326492 nonn %O A326492 0,3 %A A326492 _Gus Wiseman_, Jul 09 2019 %E A326492 Terms a(16) and beyond from _Andrew Howroyd_, Aug 30 2019