This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326496 #24 May 10 2025 14:41:08 %S A326496 1,1,1,1,2,2,3,3,3,4,6,6,9,9,15,17,30,30,46,46,51,61,103,103,129,158, %T A326496 282,282,322,322,553,553,615,689,1247,1365,1870,1870,3566,3758,5244, %U A326496 5244,8677,8677,9807,12147,23351,23351,27469,31694,45718,47186,54594,54594,95382,108198 %N A326496 Number of maximal product-free subsets of {1..n}. %C A326496 A set is product-free if it contains no product of two (not necessarily distinct) elements. %C A326496 Also the number of maximal quotient-free subsets of {1..n}. %H A326496 Fausto A. C. Cariboni, <a href="/A326496/b326496.txt">Table of n, a(n) for n = 0..85</a> %H A326496 P. J. Cameron and P. Erdős, <a href="https://www.researchgate.net/publication/247043302_On_the_number_of_sets_of_integers_with_various_properties">On the number of integers with various properties</a>, in R. A. Mullin, ed., Number Theory: Proc. First Conf. of Canad. Number Theory Assoc. Conf., Banff, De Gruyter, Berlin, 1990, pp. 61-79. %H A326496 Andrew Howroyd, <a href="/A326496/a326496_1.txt">PARI Program</a> %e A326496 The a(2) = 1 through a(10) = 6 subsets (A = 10): %e A326496 {2} {23} {23} {235} {235} {2357} {23578} {23578} {23578} %e A326496 {34} {345} {256} {2567} {25678} {256789} {2378A} %e A326496 {3456} {34567} {345678} {345678} {256789} %e A326496 {456789} {26789A} %e A326496 {345678A} %e A326496 {456789A} %t A326496 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A326496 Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Times@@@Tuples[#,2]]=={}&]]],{n,0,10}] %o A326496 (PARI) \\ See link for program file. %o A326496 for(n=0, 30, print1(A326496(n), ", ")) \\ _Andrew Howroyd_, Aug 30 2019 %Y A326496 Product-free subsets are A326489. %Y A326496 Subsets without products of distinct elements are A326117. %Y A326496 Maximal sum-free subsets are A121269. %Y A326496 Maximal sum-free and product-free subsets are A326497. %Y A326496 Maximal subsets without products of distinct elements are A325710. %Y A326496 Cf. A007865, A051026, A326076, A326491, A326492, A326495, A327591. %K A326496 nonn %O A326496 0,5 %A A326496 _Gus Wiseman_, Jul 09 2019 %E A326496 a(18)-a(55) from _Andrew Howroyd_, Aug 30 2019