This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326497 #20 Oct 28 2020 04:06:43 %S A326497 1,1,1,1,2,3,4,6,8,9,15,21,26,38,51,69,89,119,149,197,261,356,447,601, %T A326497 781,1003,1293,1714,2228,2931,3697,4843,6258,8187,10273,13445,16894, %U A326497 21953,27469,35842,45410,58948,73939,95199,120593,154510,192995,247966,312642 %N A326497 Number of maximal sum-free and product-free subsets of {1..n}. %C A326497 A set is sum-free and product-free if it contains no sum or product of two (not necessarily distinct) elements. %H A326497 Fausto A. C. Cariboni, <a href="/A326497/b326497.txt">Table of n, a(n) for n = 0..68</a> %H A326497 Andrew Howroyd, <a href="/A326497/a326497.txt">PARI Program</a> %e A326497 The a(2) = 1 through a(10) = 15 subsets (A = 10): %e A326497 {2} {23} {23} {23} {23} {237} {256} {267} {23A} %e A326497 {34} {25} {256} {256} {258} {345} {345} %e A326497 {345} {345} {267} {267} {357} {34A} %e A326497 {456} {345} {345} {2378} {357} %e A326497 {357} {357} {2569} {38A} %e A326497 {4567} {2378} {2589} {2378} %e A326497 {4567} {4567} {2569} %e A326497 {5678} {4679} {2589} %e A326497 {56789} {267A} %e A326497 {269A} %e A326497 {4567} %e A326497 {4679} %e A326497 {479A} %e A326497 {56789} %e A326497 {6789A} %t A326497 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A326497 Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Tuples[#,2],Times@@@Tuples[#,2]]]=={}&]]],{n,0,10}] %o A326497 (PARI) \\ See link for program file. %o A326497 for(n=0, 37, print1(A326497(n), ", ")) \\ _Andrew Howroyd_, Aug 30 2019 %Y A326497 Sum-free and product-free subsets are A326495. %Y A326497 Sum-free subsets are A007865. %Y A326497 Maximal sum-free subsets are A121269. %Y A326497 Product-free subsets are A326489. %Y A326497 Maximal product-free subsets are A326496. %Y A326497 Subsets with sums (and products) are A326083. %Y A326497 Cf. A051026, A103580, A325710, A326076, A326117, A326491, A326492, A326498. %K A326497 nonn %O A326497 0,5 %A A326497 _Gus Wiseman_, Jul 09 2019 %E A326497 a(21)-a(40) from _Andrew Howroyd_, Aug 30 2019 %E A326497 a(41)-a(48) from _Jinyuan Wang_, Oct 11 2020