This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326498 #14 Oct 11 2020 03:10:32 %S A326498 1,1,1,3,3,6,11,16,20,32,53,78,107,149,206,292,391,556,782,1062,1451, %T A326498 1929,2564,3404,4431,5853,7672,9999,12973,16922,22194,28655,36734, %U A326498 47036,60375,76866,97892,123627,157008,196633,248221,311442,390859,488327,610685 %N A326498 Number of maximal subsets of {1..n} containing no sums of distinct elements. %H A326498 Andrew Howroyd, <a href="/A326498/a326498.txt">PARI Program</a> %e A326498 The a(1) = 1 through a(7) = 16 subsets: %e A326498 {1} {1,2} {1,2} {1,3} {1,2,4} {1,2,4} {1,2,4} %e A326498 {1,3} {1,2,4} {1,2,5} {1,2,5} {1,2,5} %e A326498 {2,3} {2,3,4} {1,3,5} {1,2,6} {1,2,6} %e A326498 {2,3,4} {1,3,5} {1,2,7} %e A326498 {2,4,5} {1,3,6} {1,3,6} %e A326498 {3,4,5} {1,4,6} {1,4,6} %e A326498 {2,3,4} {1,4,7} %e A326498 {2,3,6} {2,3,4} %e A326498 {2,4,5} {2,4,5} %e A326498 {2,5,6} {2,4,7} %e A326498 {3,4,5,6} {2,5,6} %e A326498 {1,3,5,7} %e A326498 {2,3,6,7} %e A326498 {3,4,5,6} %e A326498 {3,5,6,7} %e A326498 {4,5,6,7} %t A326498 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A326498 Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Plus@@@Subsets[#,{2,n}]]=={}&]]],{n,0,10}] %o A326498 (PARI) \\ See link for program file. %o A326498 for(n=0, 25, print1(A326498(n), ", ")) \\ _Andrew Howroyd_, Aug 29 2019 %Y A326498 Subsets without sums of distinct elements are A151897. %Y A326498 Maximal sum-free subsets are A121269. %Y A326498 Subsets with sums are A326083. %Y A326498 Maximal subsets without products of distinct elements are A325710. %Y A326498 Maximal subsets without sums or products of distinct elements are A326025. %Y A326498 Cf. A007865, A103580, A326117, A326495, A326497. %K A326498 nonn %O A326498 0,4 %A A326498 _Gus Wiseman_, Jul 09 2019 %E A326498 a(16)-a(40) from _Andrew Howroyd_, Aug 29 2019 %E A326498 a(41)-a(44) from _Jinyuan Wang_, Oct 11 2020