This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326501 #28 Jun 18 2022 12:13:25 %S A326501 1,0,4,-23,233,-2892,43764,-779779,15997437,-371423052,9628576948, %T A326501 -275683093663,8640417354593,-294234689237660,10817772136320356, %U A326501 -427076118244539019,18019667955465012597,-809220593930871751580,38537187481365665823844 %N A326501 a(n) = Sum_{k=0..n} (-k)^k. %H A326501 Seiichi Manyama, <a href="/A326501/b326501.txt">Table of n, a(n) for n = 0..386</a> %F A326501 a(n) = 1 + (-1)^n * A001099(n). %p A326501 a:= proc(n) option remember; `if`(n<0, 0, (-n)^n+a(n-1)) end: %p A326501 seq(a(n), n=0..23); # _Alois P. Heinz_, Sep 12 2019 %t A326501 RecurrenceTable[{a[0] == 1, a[n] == a[n-1] + (-n)^n}, a, {n, 0, 23}] (* _Jean-François Alcover_, Nov 27 2020 *) %o A326501 (PARI) {a(n) = sum(k=0, n, (-k)^k)} %o A326501 (Python) %o A326501 from itertools import accumulate, count, islice %o A326501 def A326501_gen(): # generator of terms %o A326501 yield from accumulate((-k)**k for k in count(0)) %o A326501 A326501_list = list(islice(A326501_gen(),10)) # _Chai Wah Wu_, Jun 18 2022 %Y A326501 Cf. A001099, A062970, A177885. %K A326501 sign,easy %O A326501 0,3 %A A326501 _Seiichi Manyama_, Sep 12 2019