cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326513 Number of set partitions of {1..n} where each block has a different average.

This page as a plain text file.
%I A326513 #14 Aug 20 2024 12:48:48
%S A326513 1,1,2,4,12,40,154,650,3024,15110,81538,468494,2863340,18481390,
%T A326513 125838194,897725927,6715102246,52372397021,425716871241,
%U A326513 3594451206166,31509992921241,285799247349838,2682935185643622,25990339824995969,259777696236210943,2673388551328088666
%N A326513 Number of set partitions of {1..n} where each block has a different average.
%H A326513 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a>
%e A326513 The a(1) = 1 through a(4) = 12 set partitions:
%e A326513   {{1}}  {{1,2}}    {{1,2,3}}      {{1,2,3,4}}
%e A326513          {{1},{2}}  {{1},{2,3}}    {{1},{2,3,4}}
%e A326513                     {{1,2},{3}}    {{1,2},{3,4}}
%e A326513                     {{1},{2},{3}}  {{1,2,3},{4}}
%e A326513                                    {{1,2,4},{3}}
%e A326513                                    {{1,3},{2,4}}
%e A326513                                    {{1,3,4},{2}}
%e A326513                                    {{1},{2},{3,4}}
%e A326513                                    {{1},{2,3},{4}}
%e A326513                                    {{1,2},{3},{4}}
%e A326513                                    {{1,4},{2},{3}}
%e A326513                                    {{1},{2},{3},{4}}
%t A326513 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A326513 Table[Length[Select[sps[Range[n]],UnsameQ@@Mean/@#&]],{n,0,8}]
%Y A326513 Cf. A000110, A007837, A035470, A038041, A275780, A326512, A326516, A326521, A326537.
%K A326513 nonn
%O A326513 0,3
%A A326513 _Gus Wiseman_, Jul 11 2019
%E A326513 a(12) from _Alois P. Heinz_, Jul 12 2019
%E A326513 a(13)-a(25) from _Christian Sievers_, Aug 20 2024