A326518 Number of normal multiset partitions of weight n where every part has the same sum.
1, 1, 3, 7, 15, 31, 75, 169, 445, 1199, 3471
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 15 normal multiset partitions: {} {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,2}} {{1,1,2}} {{1,1,1,2}} {{1},{1}} {{1,2,2}} {{1,1,2,2}} {{1,2,3}} {{1,1,2,3}} {{2},{1,1}} {{1,2,2,2}} {{3},{1,2}} {{1,2,2,3}} {{1},{1},{1}} {{1,2,3,3}} {{1,2,3,4}} {{1,1},{1,1}} {{1,2},{1,2}} {{1,3},{2,2}} {{1,4},{2,3}} {{2},{2},{1,1}} {{3},{3},{1,2}} {{1},{1},{1},{1}}
Links
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; Table[Length[Select[Join@@mps/@allnorm[n],SameQ@@Total/@#&]],{n,0,5}]
Extensions
a(10) from Robert Price, Apr 04 2025
Comments