This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326533 #8 Jul 13 2019 09:12:46 %S A326533 1,2,3,5,6,7,10,11,13,14,17,19,21,22,23,26,29,31,34,35,37,38,39,41,42, %T A326533 43,46,47,53,57,58,59,61,62,65,67,69,70,71,73,74,77,78,79,82,83,86,87, %U A326533 89,94,95,97,101,103,106,107,109,111,113,114,115,118,119,122 %N A326533 MM-numbers of multiset partitions where each part has a different length. %C A326533 These are numbers where each prime index has a different Omega (number of prime factors counted with multiplicity). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. %H A326533 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A326533 The sequence of multiset partitions where each part has a different average preceded by their MM-numbers begins: %e A326533 1: {} %e A326533 2: {{}} %e A326533 3: {{1}} %e A326533 5: {{2}} %e A326533 6: {{},{1}} %e A326533 7: {{1,1}} %e A326533 10: {{},{2}} %e A326533 11: {{3}} %e A326533 13: {{1,2}} %e A326533 14: {{},{1,1}} %e A326533 17: {{4}} %e A326533 19: {{1,1,1}} %e A326533 21: {{1},{1,1}} %e A326533 22: {{},{3}} %e A326533 23: {{2,2}} %e A326533 26: {{},{1,2}} %e A326533 29: {{1,3}} %e A326533 31: {{5}} %e A326533 34: {{},{4}} %e A326533 35: {{2},{1,1}} %t A326533 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326533 Select[Range[100],UnsameQ@@PrimeOmega/@primeMS[#]&] %Y A326533 A subsequence of A005117. %Y A326533 Cf. A007837, A038041, A112798, A302242, A320324, A326026, A326514, A326517, A326534, A326535, A326536, A326537. %K A326533 nonn %O A326533 1,2 %A A326533 _Gus Wiseman_, Jul 12 2019