This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326534 #7 Jul 13 2019 09:12:55 %S A326534 1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,35,37,41,43,47,49, %T A326534 53,59,61,64,67,71,73,79,81,83,89,97,101,103,107,109,113,121,125,127, %U A326534 128,131,137,139,143,149,151,157,163,167,169,173,175,179,181,191 %N A326534 MM-numbers of multiset partitions where every part has the same sum. %C A326534 First differs from A298538 in lacking 187. %C A326534 These are numbers where each prime index has the same sum of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. %H A326534 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A326534 The sequence of multiset partitions where every part has the same sum, preceded by their MM-numbers, begins: %e A326534 1: {} %e A326534 2: {{}} %e A326534 3: {{1}} %e A326534 4: {{},{}} %e A326534 5: {{2}} %e A326534 7: {{1,1}} %e A326534 8: {{},{},{}} %e A326534 9: {{1},{1}} %e A326534 11: {{3}} %e A326534 13: {{1,2}} %e A326534 16: {{},{},{},{}} %e A326534 17: {{4}} %e A326534 19: {{1,1,1}} %e A326534 23: {{2,2}} %e A326534 25: {{2},{2}} %e A326534 27: {{1},{1},{1}} %e A326534 29: {{1,3}} %e A326534 31: {{5}} %e A326534 32: {{},{},{},{},{}} %e A326534 35: {{2},{1,1}} %t A326534 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326534 Select[Range[100],SameQ@@Total/@primeMS/@primeMS[#]&] %Y A326534 Cf. A035470, A038041, A112798, A302242, A320324, A321455, A326518, A326533, A326535, A326536, A326537. %K A326534 nonn %O A326534 1,2 %A A326534 _Gus Wiseman_, Jul 12 2019