This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326535 #10 Apr 03 2025 02:20:19 %S A326535 1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30,31,33,34,37,38,39, %T A326535 41,42,43,46,47,51,53,55,57,58,59,61,62,65,66,67,69,71,73,74,77,78,79, %U A326535 82,83,85,86,87,89,91,93,94,95,97,101,102,103,106,107,109 %N A326535 MM-numbers of multiset partitions where each part has a different sum. %C A326535 First differs from A298540 in having 187. %C A326535 These are numbers where each prime index has a different sum of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. %H A326535 Robert Price, <a href="/A326535/b326535.txt">Table of n, a(n) for n = 1..9715</a> %H A326535 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A326535 The sequence of multiset partitions where each part has a different sum, preceded by their MM-numbers, begins: %e A326535 1: {} %e A326535 2: {{}} %e A326535 3: {{1}} %e A326535 5: {{2}} %e A326535 6: {{},{1}} %e A326535 7: {{1,1}} %e A326535 10: {{},{2}} %e A326535 11: {{3}} %e A326535 13: {{1,2}} %e A326535 14: {{},{1,1}} %e A326535 15: {{1},{2}} %e A326535 17: {{4}} %e A326535 19: {{1,1,1}} %e A326535 21: {{1},{1,1}} %e A326535 22: {{},{3}} %e A326535 23: {{2,2}} %e A326535 26: {{},{1,2}} %e A326535 29: {{1,3}} %e A326535 30: {{},{1},{2}} %e A326535 31: {{5}} %t A326535 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326535 Select[Range[100],UnsameQ@@Total/@primeMS/@primeMS[#]&] %Y A326535 Cf. A038041, A112798, A275780, A302242, A320324, A321469, A326519, A326533, A326534, A326536, A326537. %K A326535 nonn %O A326535 1,2 %A A326535 _Gus Wiseman_, Jul 12 2019