This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326536 #6 Jul 13 2019 09:13:10 %S A326536 1,2,3,4,5,7,8,9,11,13,16,17,19,21,23,25,27,29,31,32,37,41,43,47,49, %T A326536 53,57,59,61,63,64,67,71,73,79,81,83,89,97,101,103,107,109,113,115, %U A326536 121,125,127,128,131,133,137,139,145,147,149,151,157,159,163,167 %N A326536 MM-numbers of multiset partitions where every part has the same average. %C A326536 First differs from A322902 in having 145. %C A326536 These are numbers where each prime index has the same average of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. %H A326536 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A326536 The sequence of multiset partitions where every part has the same average, preceded by their MM-numbers, begins: %e A326536 1: {} %e A326536 2: {{}} %e A326536 3: {{1}} %e A326536 4: {{},{}} %e A326536 5: {{2}} %e A326536 7: {{1,1}} %e A326536 8: {{},{},{}} %e A326536 9: {{1},{1}} %e A326536 11: {{3}} %e A326536 13: {{1,2}} %e A326536 16: {{},{},{},{}} %e A326536 17: {{4}} %e A326536 19: {{1,1,1}} %e A326536 21: {{1},{1,1}} %e A326536 23: {{2,2}} %e A326536 25: {{2},{2}} %e A326536 27: {{1},{1},{1}} %e A326536 29: {{1,3}} %e A326536 31: {{5}} %e A326536 32: {{},{},{},{},{}} %t A326536 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326536 Select[Range[100],SameQ@@Mean/@primeMS/@primeMS[#]&] %Y A326536 Cf. A038041, A051293, A112798, A302242, A320324, A326512, A326515, A326520, A326533, A326534, A326535, A326537. %K A326536 nonn %O A326536 1,2 %A A326536 _Gus Wiseman_, Jul 12 2019