This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326537 #8 Jul 13 2019 14:39:25 %S A326537 1,2,3,5,6,7,10,11,13,14,15,17,19,22,23,26,29,30,31,33,34,35,37,38,39, %T A326537 41,43,46,47,51,53,55,58,59,61,62,65,66,67,69,70,71,73,74,77,78,79,82, %U A326537 83,85,86,87,89,91,93,94,95,97,101,102,103,106,107,109,110 %N A326537 MM-numbers of multiset partitions where each part has a different average. %C A326537 These are numbers where each prime index has a different average of prime indices. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is obtained by taking the multiset of prime indices of each prime index of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. %H A326537 Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a> %e A326537 The sequence of multiset partitions where each part has a different average, preceded by their MM-numbers, begins: %e A326537 1: {} %e A326537 2: {{}} %e A326537 3: {{1}} %e A326537 5: {{2}} %e A326537 6: {{},{1}} %e A326537 7: {{1,1}} %e A326537 10: {{},{2}} %e A326537 11: {{3}} %e A326537 13: {{1,2}} %e A326537 14: {{},{1,1}} %e A326537 15: {{1},{2}} %e A326537 17: {{4}} %e A326537 19: {{1,1,1}} %e A326537 22: {{},{3}} %e A326537 23: {{2,2}} %e A326537 26: {{},{1,2}} %e A326537 29: {{1,3}} %e A326537 30: {{},{1},{2}} %e A326537 31: {{5}} %e A326537 33: {{1},{3}} %t A326537 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326537 Select[Range[100],UnsameQ@@Mean/@primeMS/@primeMS[#]&] %Y A326537 Cf. A038041, A051293, A112798, A302242, A320324, A326513, A326516, A326521, A326533, A326534, A326535, A326536. %K A326537 nonn %O A326537 1,2 %A A326537 _Gus Wiseman_, Jul 12 2019