cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326566 Number of covering antichains of subsets of {1..n} with equal edge-sums.

This page as a plain text file.
%I A326566 #10 Aug 14 2019 16:46:54
%S A326566 2,1,1,2,4,14,92,1320,73584,51913039
%N A326566 Number of covering antichains of subsets of {1..n} with equal edge-sums.
%C A326566 An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.
%e A326566 The a(1) = 1 through a(5) = 14 antichains:
%e A326566   {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}      {{1,2,3,4,5}}
%e A326566                   {{3},{1,2}}  {{1,4},{2,3}}    {{1,2,5},{1,3,4}}
%e A326566                                {{2,4},{1,2,3}}  {{1,3,5},{2,3,4}}
%e A326566                                {{3,4},{1,2,4}}  {{1,4,5},{2,3,5}}
%e A326566                                                 {{5},{1,4},{2,3}}
%e A326566                                                 {{1,4,5},{1,2,3,4}}
%e A326566                                                 {{2,3,5},{1,2,3,4}}
%e A326566                                                 {{2,4,5},{1,2,3,5}}
%e A326566                                                 {{3,4,5},{1,2,4,5}}
%e A326566                                                 {{1,5},{2,4},{1,2,3}}
%e A326566                                                 {{2,5},{3,4},{1,2,4}}
%e A326566                                                 {{3,5},{1,2,5},{1,3,4}}
%e A326566                                                 {{4,5},{1,3,5},{2,3,4}}
%e A326566                                                 {{1,4,5},{2,3,5},{1,2,3,4}}
%t A326566 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A326566 cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&],Union@@#==Range[n]&];
%t A326566 Table[Length[cleq[n]],{n,0,5}]
%Y A326566 The non-covering case is A326574.
%Y A326566 Cf. A000372, A006126, A035470, A307249, A321455, A321717, A321718, A326518, A326534, A326565.
%K A326566 nonn,more
%O A326566 0,1
%A A326566 _Gus Wiseman_, Jul 13 2019
%E A326566 a(9) from _Andrew Howroyd_, Aug 14 2019