cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326571 Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having different sums.

This page as a plain text file.
%I A326571 #7 Jul 19 2019 07:51:55
%S A326571 1,0,1,5,61,2721,788221
%N A326571 Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having different sums.
%C A326571 An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.
%e A326571 The a(3) = 5 antichains:
%e A326571   {{1,2,3}}
%e A326571   {{1,3},{2,3}}
%e A326571   {{1,2},{2,3}}
%e A326571   {{1,2},{1,3}}
%e A326571   {{1,2},{1,3},{2,3}}
%e A326571 The a(4) = 61 antichains:
%e A326571   {1234}  {12}{34}    {12}{13}{14}   {12}{13}{14}{24}   {12}{13}{14}{24}{34}
%e A326571           {13}{24}    {12}{13}{24}   {12}{13}{14}{34}   {12}{13}{23}{24}{34}
%e A326571           {12}{134}   {12}{13}{34}   {12}{13}{23}{24}
%e A326571           {12}{234}   {12}{14}{34}   {12}{13}{23}{34}
%e A326571           {13}{124}   {12}{23}{24}   {12}{13}{24}{34}
%e A326571           {13}{234}   {12}{23}{34}   {12}{14}{24}{34}
%e A326571           {14}{123}   {12}{24}{34}   {12}{23}{24}{34}
%e A326571           {14}{234}   {13}{14}{24}   {13}{14}{24}{34}
%e A326571           {23}{124}   {13}{23}{24}   {13}{23}{24}{34}
%e A326571           {23}{134}   {13}{23}{34}   {12}{13}{14}{234}
%e A326571           {24}{134}   {13}{24}{34}   {12}{23}{24}{134}
%e A326571           {34}{123}   {14}{24}{34}   {123}{124}{134}{234}
%e A326571           {123}{124}  {12}{13}{234}
%e A326571           {123}{134}  {12}{14}{234}
%e A326571           {123}{234}  {12}{23}{134}
%e A326571           {124}{134}  {12}{24}{134}
%e A326571           {124}{234}  {13}{14}{234}
%e A326571           {134}{234}  {13}{23}{124}
%e A326571                       {14}{34}{123}
%e A326571                       {23}{24}{134}
%e A326571                       {12}{134}{234}
%e A326571                       {13}{124}{234}
%e A326571                       {14}{123}{234}
%e A326571                       {23}{124}{134}
%e A326571                       {123}{124}{134}
%e A326571                       {123}{124}{234}
%e A326571                       {123}{134}{234}
%e A326571                       {124}{134}{234}
%t A326571 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
%t A326571 cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];
%t A326571 Table[Length[cleq[n]],{n,0,5}]
%Y A326571 Antichain covers are A006126.
%Y A326571 Set partitions with different block-sums are A275780.
%Y A326571 MM-numbers of multiset partitions with different part-sums are A326535.
%Y A326571 Antichain covers with equal edge-sums and no singletons are A326565.
%Y A326571 Antichain covers with different edge-sizes and no singletons are A326569.
%Y A326571 The case with singletons allowed is A326572.
%Y A326571 Antichains with equal edge-sums are A326574.
%Y A326571 Cf. A000372, A003182, A035470, A307249, A321469, A326519, A326566, A326570, A326573.
%K A326571 nonn,more
%O A326571 0,4
%A A326571 _Gus Wiseman_, Jul 18 2019