This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326572 #5 Jul 19 2019 07:52:03 %S A326572 2,1,2,8,80,3015,803898 %N A326572 Number of covering antichains of subsets of {1..n}, all having different sums. %C A326572 An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}. %e A326572 The a(0) = 2 through a(3) = 8 antichains: %e A326572 {} {{1}} {{1,2}} {{1,2,3}} %e A326572 {{}} {{1},{2}} {{1},{2,3}} %e A326572 {{2},{1,3}} %e A326572 {{1,2},{1,3}} %e A326572 {{1,2},{2,3}} %e A326572 {{1},{2},{3}} %e A326572 {{1,3},{2,3}} %e A326572 {{1,2},{1,3},{2,3}} %e A326572 The a(4) = 80 antichains: %e A326572 {1234} {1}{234} {1}{2}{34} {1}{2}{3}{4} {12}{13}{14}{24}{34} %e A326572 {12}{34} {1}{3}{24} {1}{23}{24}{34} {12}{13}{23}{24}{34} %e A326572 {13}{24} {1}{4}{23} {2}{13}{14}{34} %e A326572 {2}{134} {2}{3}{14} {12}{13}{14}{24} %e A326572 {3}{124} {1}{23}{24} {12}{13}{14}{34} %e A326572 {4}{123} {1}{23}{34} {12}{13}{23}{24} %e A326572 {12}{134} {1}{24}{34} {12}{13}{23}{34} %e A326572 {12}{234} {2}{13}{14} {12}{13}{24}{34} %e A326572 {13}{124} {2}{13}{34} {12}{14}{24}{34} %e A326572 {13}{234} {2}{14}{34} {12}{23}{24}{34} %e A326572 {14}{123} {3}{14}{24} {13}{14}{24}{34} %e A326572 {14}{234} {4}{12}{23} {13}{23}{24}{34} %e A326572 {23}{124} {12}{13}{14} {12}{13}{14}{234} %e A326572 {23}{134} {12}{13}{24} {12}{23}{24}{134} %e A326572 {24}{134} {12}{13}{34} {123}{124}{134}{234} %e A326572 {34}{123} {12}{14}{34} %e A326572 {123}{124} {12}{23}{24} %e A326572 {123}{134} {12}{23}{34} %e A326572 {123}{234} {12}{24}{34} %e A326572 {124}{134} {13}{14}{24} %e A326572 {124}{234} {13}{23}{24} %e A326572 {134}{234} {13}{23}{34} %e A326572 {13}{24}{34} %e A326572 {14}{24}{34} %e A326572 {12}{13}{234} %e A326572 {12}{14}{234} %e A326572 {12}{23}{134} %e A326572 {12}{24}{134} %e A326572 {13}{14}{234} %e A326572 {13}{23}{124} %e A326572 {14}{34}{123} %e A326572 {23}{24}{134} %e A326572 {12}{134}{234} %e A326572 {13}{124}{234} %e A326572 {14}{123}{234} %e A326572 {23}{124}{134} %e A326572 {123}{124}{134} %e A326572 {123}{124}{234} %e A326572 {123}{134}{234} %e A326572 {124}{134}{234} %t A326572 stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]]; %t A326572 cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&]; %t A326572 Table[Length[cleq[n]],{n,0,5}] %Y A326572 Antichain covers are A006126. %Y A326572 Set partitions with different block-sums are A275780. %Y A326572 MM-numbers of multiset partitions with different part-sums are A326535. %Y A326572 Antichain covers with equal edge-sums are A326566. %Y A326572 Antichain covers with different edge-sizes are A326570. %Y A326572 The case without singletons is A326571. %Y A326572 Antichains with equal edge-sums are A326574. %Y A326572 Cf. A000372, A035470, A307249, A321469, A326519, A326565, A326569, A326573. %K A326572 nonn,more %O A326572 0,1 %A A326572 _Gus Wiseman_, Jul 18 2019