cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326573 Number of connected antichains of subsets of {1..n}, all having different sums.

This page as a plain text file.
%I A326573 #6 Jul 19 2019 07:52:11
%S A326573 1,1,1,5,59,2689,787382
%N A326573 Number of connected antichains of subsets of {1..n}, all having different sums.
%C A326573 An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.
%e A326573 The a(3) = 5 antichains:
%e A326573   {{1,2,3}}
%e A326573   {{1,3},{2,3}}
%e A326573   {{1,2},{2,3}}
%e A326573   {{1,2},{1,3}}
%e A326573   {{1,2},{1,3},{2,3}}
%e A326573 The a(4) = 59 antichains:
%e A326573   {1234}  {12}{134}   {12}{13}{14}   {12}{13}{14}{24}   {12}{13}{14}{24}{34}
%e A326573           {12}{234}   {12}{13}{24}   {12}{13}{14}{34}   {12}{13}{23}{24}{34}
%e A326573           {13}{124}   {12}{13}{34}   {12}{13}{23}{24}
%e A326573           {13}{234}   {12}{14}{34}   {12}{13}{23}{34}
%e A326573           {14}{123}   {12}{23}{24}   {12}{13}{24}{34}
%e A326573           {14}{234}   {12}{23}{34}   {12}{14}{24}{34}
%e A326573           {23}{124}   {12}{24}{34}   {12}{23}{24}{34}
%e A326573           {23}{134}   {13}{14}{24}   {13}{14}{24}{34}
%e A326573           {24}{134}   {13}{23}{24}   {13}{23}{24}{34}
%e A326573           {34}{123}   {13}{23}{34}   {12}{13}{14}{234}
%e A326573           {123}{124}  {13}{24}{34}   {12}{23}{24}{134}
%e A326573           {123}{134}  {14}{24}{34}   {123}{124}{134}{234}
%e A326573           {123}{234}  {12}{13}{234}
%e A326573           {124}{134}  {12}{14}{234}
%e A326573           {124}{234}  {12}{23}{134}
%e A326573           {134}{234}  {12}{24}{134}
%e A326573                       {13}{14}{234}
%e A326573                       {13}{23}{124}
%e A326573                       {14}{34}{123}
%e A326573                       {23}{24}{134}
%e A326573                       {12}{134}{234}
%e A326573                       {13}{124}{234}
%e A326573                       {14}{123}{234}
%e A326573                       {23}{124}{134}
%e A326573                       {123}{124}{134}
%e A326573                       {123}{124}{234}
%e A326573                       {123}{134}{234}
%e A326573                       {124}{134}{234}
%Y A326573 Antichain covers are A006126.
%Y A326573 Connected antichains are A048143.
%Y A326573 Set partitions with different block-sums are A275780.
%Y A326573 MM-numbers of multiset partitions with different part-sums are A326535.
%Y A326573 Antichain covers with equal edge-sums are A326566.
%Y A326573 The non-connected case is A326572.
%Y A326573 Cf. A000372, A293510, A307249, A321469, A323818, A326519, A326565, A326569, A326570, A326571.
%K A326573 nonn,more
%O A326573 0,4
%A A326573 _Gus Wiseman_, Jul 18 2019